- Усадка алюминия при литье
- Брак литья алюминия
- Два источника брака
- Окисление и насыщение водородом
- Усадка
- Влияние типа затвердевания
- Влияние системы литья
- Нужен совет, плавка алюминия, литьё.
- Усадка литейных сплавов | 03.04.2012
- Усадка алюминия при литье
- Предложения на покупку
- Предложения на продажу
- Информация
- Спрос на продукцию, цены
- Предложения на поставку продукции, цены
- Товары и услуги
- Новости и события
- Аналитика и обзоры
- Каталог организаций и предприятий
- ГОСТы, ТУ, стандарты
- Оборудование для литья алюминия в домашних условиях
- Особенности промышленного процесса
- Необходимое оборудование
- Особенности производства форм
- Порядок работ
Усадка алюминия при литье
Брак литья алюминия
Два источника брака
Источниками брака при литье алюминия являются два явления, которые могут действовать как каждый отдельно, так и совместно:
- Постоянное, прогрессирующее окисление алюминиевого расплава и насыщение его водородом.
- Уменьшение удельного объема алюминия при его переходе из жидкого в твердое состояние.
Окисление и насыщение водородом
В результате непрерывного окисления алюминиевого расплава и насыщения его водородом в алюминиевой отливке возникают следующие дефекты, которые являются причинами брака готовых отливок:
- поры;
- насыщение воздухом;
- включения;
- нарушение герметичности;
- поверхностные дефекты;
- низкая прочность;
- низкая пластичность.
Для предотвращения или ослабления влияния окисления и насыщения водородом принимают следующие меры:
- обработку металла в печи и его дегазацию;
- жесткий контроль температур плавления и литья;
- фильтрование расплава.
При переходе алюминия из жидкого в твердое состояние растворенный в нем водород выделяется и во взаимодействии с оксидами создает проблемы с пористостью в готовых отливках.
Главной задачей при обеспечении высокого качества алюминиевого расплава является поддержание скорости окисления расплава в определенных рамках. Для этого предпринимаются следующие действия:
- высокое качество исходных чушек;
- современное литейное оборудование и технологии литья;
- контроль загрузки шихты (сухая шихта, быстрое расплавление);
- контроль температуры при плавлении и литье;
- очистка расплава и контроль качества расплава;
- меры безопасности при обработке и транспортировке расплава и его разливке.
Усадка
Из-за уменьшения удельного объема алюминия при его затвердевании могут возникать следующие дефекты, ведущие к браку литейной продукции:
- раковины;
- усадка;
- насыщение воздухом;
- нарушение герметичности;
- низкая прочность и пластичность.
Для предотвращения или ослабления влияния уменьшения удельного объема алюминия при его затвердевании принимают следующие меры:
- оптимальное размещение литниковой системы;
- температурный контроль процесса затвердевания;
- измельчение зерна;
- применение модификаторов сплава.
Уменьшение удельного объема при переходе алюминиевого сплава из жидкого в твердое состояние может приводить к уменьшению объема— в зависимости от литейного сплава — до 7 %. При неблагоприятных условиях часть этой разницы в объеме может быть причиной брака литых алюминиевых изделий — усадочных полостей, пор или разрывов.
Для того, чтобы получить хорошую отливку необходимо обеспечивать возможность поступления дополнительного жидкого металла к усаживаемой микроструктуре в течение всего процесса затвердевания отливки.
При литье под давлением это обеспечивают путем повышенного давления расплава, а при гравитационном литье — за счет высоты прибыльных надставок.
Влияние типа затвердевания
Важен также тип затвердевания. В алюминиево-кремниевых сплавах — эвтектических силуминах с содержанием кремния около 13 % при затвердевании сразу образуется твердая оболочка. По другому происходит затвердевание в доэвтектических силуминах, а также в алюминиево-магниевых сплавах и сплавах с легированием медью: сначала образуется дендритная структура, а затем затвердевают остальные компоненты с более низкой температурой затвердевания.
Влияние системы литья
В гравитационном литье, к которому относится, например, литье в кокиль, подачу расплава в литниковую систему производят в самом критическом или «толстом» участке отливки. Не контролируемое или турбулентное наполнение полостей литейной формы имеет отрицательное влияние на качество отливки.
Литниковая система, которая позволяет контролировать движение фронта затвердевания от дна формы до входа в литниковую системы является очень полезной для качества отливки. В хорошей системе литья заполнение формы начинается с ее нижней части и всегда так, чтобы слои нового горячего металла «ложились» на нижние, уже затвердевшие слои.
Система литья такого типа может частично компенсировать негативное влияние, которое оказывает объемное сокращение алюминия при его затвердевании и в то же время направлять расплавленный металл в форму таким образом, чтобы избежать нового его окисления из-за турбулентности течения.
Нужен совет, плавка алюминия, литьё.
Проффэсор написал :
Имею Энное количество алюминия ( корпуса от HDD) Хочу переплавить, сделать заготовки. Нужен совет.
Если полазить по сайту » > , то много интересного можно обнаружить.
Дядечка буквально из ничего, из придорожного хлама делает и печи, и горны, и станки.
Давно дело было, понадобился кусочек алюминия размером со спичечный коробок, а нигде найти не могли. Дык просто взяли провода, какие-то кусочки алюминиевых (или сплавов) деталей и в обычную консервную банку. Как раз баню топить начали, ну и банку в печь поставили. Формой послужил глинозём, набрали его в коробочку, спичечным коробком сформировали углубление. Расплавилось довольно быстро, банку зацепил плоскогубцами и потихоньку залил. Остыло, лишнее отпилили, небольшую воронку сточили и получили требуемую заготовку.
Небольшая заметка про метод SMAILа, с картинками
» >
Босые ноги,- обязательное условие!
плавлю вторичный алюминий(поршни, картера, вобщем моторку) и отливаю в песок(кварц. песок, стекло , углекислота). в отливке получаются поры.Пробовал флюс покровно рафинирующий, таблетки дегазирующие, вводил таблетки модификаторы, даже рафенировал аргоном ни чего не помагло.Также делал двойную переплавку, тоже не помогло.подскажите что делать?
Литье под давлением с предварительной вакуумизацией (дегазацией) расплава.
PS пишут » > что фильтрация помогла убрать раковины от шлака. Вообще: » >
Илья вас написал :
отливаю в песок(кварц. песок, стекло , углекислота). в отливке получаются поры.
В железный чистый кокиль лили тоже с порами?
В детстве плавили в костре в консервной банке электрический провод .Отливали в гипсовые формы кукиши -дули . Типа брелки на ключи .Где то до сих пор валяется один .
Илья вас написал :
плавлю вторичный алюминий(поршни, картера, вобщем моторку) и отливаю в песок(кварц. песок, стекло , углекислота). в отливке получаются поры.Пробовал флюс покровно рафинирующий, таблетки дегазирующие, вводил таблетки модификаторы, даже рафенировал аргоном ни чего не помагло.Также делал двойную переплавку, тоже не помогло.подскажите что делать?
Какой обьем планируете переплавлять? Если много, тогда о печке позаботьтесь. Если разово и немного (пару-тройку килограммов) то возьмите толстостенный чугунный котелок (продаются на базарах, где мангалы, жаровни и прочее для дачных дел) они как правило, продаются с крышкой, набросайте туда обломки, и поставьте в тот-же шашлычный мангал на угли, с боков тоже обвалите углями. Поддувайте в угли воздух, чтоб угли светились красным светом — это примерно 800 градусов по цельсию. Примерно через сорок минут снимите крышку — все расплавится.
ИМЕЙТЕ В ВИДУ — АЛЮМИНИЙ НЕ МЕНЯЕТ ЦВЕТ ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ — куча народу «потрогала» пальцем чистенькое белое железо — и визжала от ожога до кости.
Перед разливкой окисную пленку с поверхности просто снимите стальной кочергой, аккуратно, не замешивая ее в расплав.
Выливайте в форму с запасом — литейная усадка у него приличная, причем разная для разных сплавов.
К сожалению, при литье в землю от пористости вы не избавитесь никак. В самом лучшем случае не будет крупных раковин, но в обьеме все равно останутся мелкие поры — до 1 мм.
В железный чистый кокиль лили тоже с порами? == Да, там всегда поры имеются. Но в кокиль гарантированно получается ровная плотная поверхность, что связано с высокой скоростью охлаждения. растворенные газы просто не успевают выделиться при затвердевании, остаются растворенными.
На машинах непрерывного литься расплав алюминия просто льется в кристаллизатор, поливается там водой, и выходит столб алюминия — нету ни пор, ни усадки. Но эти столбы далее идут на экструзию профиля — там под давлением в наряженном состоянии растворенные газы не имеют никакого значения.
Корпуса винчестеров льются под давлением, потому они такие плотные. В вашем случае вам машину для литья под давлением не достать. А если достанете — то изготовление разьемной формы будет стоить очень много денег — самому не осилить.
Не зная диаметра нужного слитка, трудно советовать. но попробуйте лить в стальную форму. Типа высверленной в чугунине глухой дырки. За счет высокой скорости охлаждения поверхность точно будет идеальной.
Усадка литейных сплавов | 03.04.2012
Уменьшение линейных размеров и объема при охлаждении в результате сближения атомов металла называется усадкой. Различают объемную и линейную усадку в определенном интервале температур, выражаемую в %. Обычно объемную усадку связывают с уменьшением объемов при охлаждении и затвердевании жидкого металла, а линейную – при уменьшении линейных размеров слитков, отливок и изделий.
Рисунок 1 – Усадочные дефекты в слитке
При определении величины усадки важно правильно выбрать начальный объем жидкого металла . За время наполнения жидким металлом тела отливки часть его успевает закристаллизоваться и остыть. В результате наружная корка отливки уменьшит свои размеры и к моменту окончания отливки начальный объем жидкого металла будет меньше объема полости формы. Величина этого изменения объема зависит от линейной усадки затвердевшей корки и сил противодействующих ей. К ним относятся гидравлическое давление столба жидкого металла, термическое и механическое торможение усадки.
Линейная усадка определяется температурой начала ее проявления и коэффициентом линейного расширения. Экспериментально установлено, что линейная усадка начинается при образовании достаточно прочного скелета полузатвердевших кристаллов. Температуры, при которых это достигается, образуют на диаграмме состояния линию эффективного интервала кристаллизации. Указанный скелет полузатвердевших кристаллов образуется при 50-75 % твердой фазы в зависимости от состава стали.
Различают свободную и заторможенную усадку. Основным показателем сокращения размеров слитков и отливок в реальных условиях их затвердевания является литейная усадка, которая учитывает все виды торможения усадки. Различают термическое и механическое торможение усадки. Термическое торможение усадки вызвано различной скоростью охлаждения отдельных частей затвердевшего слоя металла. К примеру, при низком содержании углерода в стали торможение усадки достигает 25 %, снижаясь до 8 % при содержании 0,7 % углерода.
Результирующая усадка во многом определяется предусадочным расширением. К причинам предусадочного расширения относят:
- сцепление едва затвердевшей корки с поверхностью формы и ее первоначальное расширение под действием силы сцепления;
- скопление газов в междендритном пространстве в результате ликвации, которое может создавать давление, способствующее раздвижению кристаллов;
- скопление неметаллических включений и газов на границе кристаллизации, увеличивающее кристаллизационное давление и способствующее увеличению периметра корки;
- превышение сил капиллярного давления над силами сцепления между дендритами;
- разогрев и расширение наружной корки слитка в момент образования зазора.
Учитывая предусадочное расширение при расчете полной свободной линейной усадки, удается объяснить расхождения экспериментальных данных при ее определении. С этой целью рекомендуется следующее выражение для ее расчета:
При увеличении предусадочного расширения компенсируется часть термических напряжений, что сокращает трещинообразование. Предусадочное расширение тем больше, чем шире интервал температур затвердевания. Снижение объема усадочных дефектов при этом достигается в результате выделения большого количества растворенных в стали газов в период образования значительной доли твердой фазы.
Линейная усадка взаимосвязана с интенсивностью теплообмена между формой и отливкой. С увеличением усадки образующийся зазор между отливкой и формой приводит к повышению теплового сопротивления и соответствующему снижению теплоотвода. В свою очередь уменьшение интенсивности теплообмена снижает градиент температур в затвердевшем металле, уменьшая скорость усадки и разность ее величины. При этом уменьшаются термические напряжения и связанные с ними процессы пластической деформации в затвердевшей корке.
Усадка обуславливает образование усадочных раковин, подусадочной и структурной рыхлости, различных трещин, зональной ликвации и других дефектов. Учет закономерностей, свойственных усадочным явлениям, позволяет разрабатывать соответствующие мероприятия по повышению качества отливок. Уплотнение структуры обеспечивается центробежным литьем.
Рисунок 2 – Процесс центробежного литья
Усадка при затвердевании зависит от изменения объема при переходе расплава из жидкого состояния в твердое и увеличивается с ростом интервала температур кристаллизации при охлаждении. Поэтому все элементы, расширяющие этот интервал, увеличивают усадку при затвердевании. По разным оценкам значения укладываются в интервал 0,020-0,053.
Значение коэффициента усадки играет важное практическое значение, так как определяет конкретные размеры стержневых ящиков и моделей, а также, в известной мере, величину припусков на механическую обработку и связанный с этим расход металла на изготовление отливки.
Важно отметить, что показатели линейной усадки наиболее рационально определять по замерам участков форм и отливок, расположенных горизонтально в период заливки и кристаллизации сплава. Протяженность таких участков начинает изменяться только после окончания процесса кристаллизации.
Из всего используемого при выполнении задания оборудования следует изучить прибор для измерения величины линейной усадки отливки. Конструкция прибора представлена на рисунке 1. В жесткой металлической раме 1 расположено тело песчаноглинистой формы 2 с рабочей полостью 3, включающей полости двух захватов — неподвижного 4, жестко связанного с рамой прибора, и подвижного 5. В передаточную планку 6, закрепленную на подвижном захвате, упирается ножка индикатора часового типа 7, фиксирующего перемещения захвата под действием усаживающегося образца.
Рисунок 1 — Конструкция прибора для измерения величины линейной усадки прямолинейней отливки
Усадка сплавов изменяется в зависимости от их химического состава. Так, усадка серых чугунов уменьшается с увеличением содержания кремния и углерода, а также при снижении содержания серы и марганца.
В алюминиевых сплавах увеличенное содержание кремния снижает усадку. Наличие магния и меди, наоборот, повышает усадку таких сплавов.
Увеличение содержания цинка и алюминия в магниевых сплавах снижает их усадку.
При получении отливок уменьшение их линейных размеров происходит при затрудненной усадке, которая вызвана выступающими частями формы, стержнями и т.д. Потому в ряде случаев действительная усадка меньше свободной. Такая усадка носит название литейной и выражается в %. Значение литейной усадки всегда меньше свободной. При этом разница тем больше, чем сложнее и крупнее отливка. В таблице 1 приведены значения усадки сплавов.
Таблица 1 — Примерные значения усадки сплавов
В зависимости от условий охлаждения сплава и его физических свойств объемная усадка при затвердевании может проявляться следующим образом:
а) как сосредоточенные внутренние полости (закрытые или выходящие на поверхность — открытые), расположенные в тех местах отливки, которые затвердевают в последнюю очередь (усадочные раковины);
б) только равномерным изменением внешних размеров;
в) образованием мелких полостей, которые рассеяны по толщине отливок возле отдельных зерен сплава; такие полости носят название усадочной пористости или рыхлоты.
При получении отливок из сплавов, которые имеют повышенную объемную усадку и образуют усадочные раковины (высокопрочные чугуны, стали), на массивных и верхних частях отливок предусматривают прибыли — полости жидкого сплава, которые питают отливку при ее затвердевании и восполняют сокращение ее объема. Расположение и размеры прибылей должны быть выбраны так, чтобы они затвердели в последнюю очередь и именно в них локализовались усадочные раковины.
Рисунок 4 – Схема установки прибылей на отливках
|
«Спецкрепеж» |
|