Теплопроводность нержавеющей стали - Svarka-Tokarka.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Теплопроводность нержавеющей стали

Свойства нержавеющей стали – эксплуатационные и технические достоинства

Особые свойства нержавеющей стали обуславливают ее активное использование в самых разнообразных отраслях промышленности и в быту. К достоинствам нержавейки относят повышенную прочность, небольшой удельный вес и теплопроводность, отличное сопротивление коррозии и качественную свариваемость.

1 Категории нержавейки – сталь бывает разной

Нержавеющие сплавы принято подразделять на пять типов в зависимости от микроструктуры сплавов. С этой точки зрения они могут быть:

  • ферритными;
  • аустенитными;
  • дуплексными;
  • жаропрочными;
  • мартенситными.

Самыми распространенными являются аустенитные виды нержавейки. Они практически не окисляются в процессе эксплуатации, имеют высокие технические и эксплуатационные характеристики (хорошая вязкость, пластичность, устойчивость к химическим воздействиям, небольшой удельный вес и коэффициент текучести). Подобные свойства обеспечиваются введением в состав аустенитной нержавейки 10–20 % никеля и примерно 23 % хрома.

Стали с ферритной микроструктурой демонстрируют уникальные характеристики при эксплуатации в агрессивных средах.

Они имеют высокую стойкость к коррозии при повышенных температурах, малый предел текучести и особые магнитные свойства (магнитную проницаемость). В таких сплавах хрома содержится не более 17 %. Магнитные разновидности нержавейки редко используются для производства бытовых изделий. Чаще они применяются в промышленности для изготовления разнообразных конструкций.

Реже применяются мартенситные стали. Их проницаемость (магнитная) ниже, а ключевые технические достоинства следующие:

  • небольшой коэффициент пластичности;
  • хорошее удельное сопротивление на разрыв и свариваемость;
  • высокая прочность и твердость;
  • малый вес.

Жаропрочные и дуплексные сплавы используются для особых целей. Их магнитные характеристики (проницаемость) минимальные, зато они демонстрируют уникальную прочность и сопротивление коррозии при эксплуатации в высокотемпературных и хлорсодержащих средах. Поэтому подобные стали активно применяются для выпуска изделий химической и пищевой промышленности.

2 Технические показатели – самые главные цифры

Удельный вес аустенитных и жаропрочных сплавов равняется 7,95 гр/см, ферритных и других – 7,7, коэффициент электросопротивления – 0,72–0,9 для всех сталей, кроме ферритных. Электрическое сопротивление последних составляет 0,6. Коэффициент твердости нержавеющих сплавов следующий:

  • По шкале Роквелла – 70–88 единиц для жаростойких и аустенитных сталей, 75–88 для ферритных.
  • По шкале Бринелля – 120–190 (аустенитные), 135–180 (магнитные) и 145–210 (жаропрочные).

Предел прочности нержавеющих сплавов с аустенитной микроструктурой варьируется от 500 до 690 Н/мм 2 . Все зависит от конкретной марки стали. А вот прочностной предел ферритных сплавов обычно выше – до 900 Н/мм 2 . Другие характеристики рассматриваемых сталей:

  • предел упругости – 195–400 Н/мм 2 ;
  • вязкость (ударная) – 120–160Дж/см 2 (для ферритных композиций – не более 50);
  • температура появления окалины – 840–1120 °С;
  • магнитная проницаемость ферритных сплавов – 1,008 единиц (при комнатной температуре).

Предел текучести большинства марок нержавеющих сталей за минуту равняется около 205 МПа. Эта величина справедлива для всех категорий сплавов за исключением ферритных. Показатель текучести последних обычно ниже на 10–20 МПа.

Еще одна важная характеристика рассматриваемых коррозионностойких сплавов – их теплопроводность. Под ней понимают возможность материала пропускать через себя тепловую энергию (передавать ее). Теплопроводность нержавейки равняется 16–20 Вт/м*К. Это очень малый показатель. Для сравнения скажем, что теплопроводность алюминия находится на уровне 200, а меди – 400 Вт/м*К.

3 Свариваемость нержавейки – прочные соединения

Сварка рассматриваемых сплавов производится по таким методикам:

  • аргонодуговая с помощью TIG-электродов (содержат вольфрам);
  • ручная дуговая;
  • полуавтоматическая.

Лучше всего свариваются аустенитные марки нержавеющей стали. А вот сварные соединения ферритных сталей получаются более хрупкими. Это стоит учитывать при обработке таких сплавов. Важный момент! Сварка всех видов нержавейки должна осуществляться после предварительного подогрева стальных изделий. Обычно достаточно нагреть их до 150–160°.

Ручная дуговая сварка нержавеющих сплавов выполняется двумя типами электродов: с рутиловым покрытием; с основным (карбонаты магния и кальция) покрытием. Во втором случае операция ведется исключительно на обратной полярности и постоянном токе. Полуавтоматический процесс рекомендован для сварки больших по толщине листов нержавейки. А вот аргонодуговая сварка обычно применяется для соединения тонких коррозионностойких изделий.

Теплопроводность стали, алюминия, латуни, меди

Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

Влияние концентрации углерода

Концентрация углерода в стали влияет на величину теплопередачи:

  1. Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
  2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
  3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

  1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

Коэффициент теплопроводности и теплопередачи стали, сплавов

Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло. Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними. В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).

Понятие теплопроводности

Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.

Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:

  • за одну секунду;
  • через площадь один метр квадратный;
  • на расстояние один метр;
  • когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.
Читайте также:  Фуговально рейсмусовый станок своими руками

Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).

Перенос тепла на молекулярном уровне

Когда материя нагревается, увеличивается средняя кинетическая энергия составляющих ее частиц, то есть увеличивается уровень беспорядка, атомы и молекулы начинают более интенсивно и с большей амплитудой колебаться около своих равновесных положений в материале. Перенос тепла, который на макроскопическом уровне можно описать законом Фурье, на молекулярном уровне представляет собой обмен кинетической энергией между частицами (атомами и молекулами) вещества, без переноса последнего.

Это объяснение механизма теплопроводности на молекулярном уровне отличает его от механизма термической конвекции, при котором имеет место перенос тепла за счет переноса вещества. Все твердые тела обладают способностью к теплопроводности, в то время как тепловая конвекция возможна только в жидкостях и газах. Действительно, твердые вещества переносят тепло в основном за счет теплопроводности, а жидкости и газы, если есть температурные градиенты в них, переносят тепло в основном за счет процессов конвекции.

Теплопроводность материалов

Ярко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Коэффициенты теплопередачи сталей

Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.

Простые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.

Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла. Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).

Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка. Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали. Она колеблется от 47 до 58 Вт/(м*К).

Теплопроводность стали при различных температурах, как правило, не изменяется сильно. Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).

Факторы, влияющие на физическую величину

Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.

Температура материала

Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

Читайте также:  Червячный редуктор малогабаритный своими руками

Медь или нержавейка? Что лучше и безопаснее для здоровья.

Медь или нержавейка? Что лучше и безопаснее для здоровья.По Вашему мнению

Всего голосов: 1318

mak210, имхо фигня это всё!
Тепловое сопротивление медь воздух будет на порядок больше чем сопротивление стенки сосуда, так что нержавейка там или медь пофигу,
Kotische, 23 Февр. 10, 00:55

Полагаю, ключевое слово тут имхо. Если следовать логике отношения материал/воздух, то разницы между медью и пенопластом не должно быть. Но каждый понимает, что дом из меди или пенопласта будет совершенно разным по теплу.
Давно хотел напомнить за этот БРЕД, когда сторонники нержи подписывали в ту же кассу медь — типа да абсолютно одинаково. Нержа имеет (в зависимости от состава) по отношению к меди теплопроводность в 20-30 раз хуже, поэтому рассуждения про отношения передачи материал/ воздух или пристеночный слой — в реальности бред сивой кобылы. Как в старом добром анекдоте: Анечка умница, красавица, но два раза есть два раза( кто не знает анекдота, спрашивайте, расскажу ) Дом из меди или дом из брёвен тоже отдаёт тепло в воздух, но тут каждый понимает, что теплее. А про холодильник можно и мозг подзасрать, тут тема серьёзная
Kotische, ты только совершенно не прими на свой счёт, я за тебя сугубо полностью, и уж даже и близко не думал обидеть и т.п. Я чисто по существу вопроса.

victorchik, ты видишь правильно, но не всё. Качественно ты прав, а вот количественно — нет.

Рассмотрим сопротивление теплопередаче медной и нержавеющей стенки одинаковой толщины в теплообменнике. С разных сторон стенки — вода с разной температурой.
Передаче тепла сопротивляются ТРИ слоя. Первый — это прилипший, не участвующий в конвекции слой воды с одной стороны стенки второй слой — сам металл, третий слой — пограничная пленка воды с обратной стороны. Для того, чтобы тепло прошло от одной воды к другой, оно должно последовательно преодолеть все три сопротивления. При последовательном соединении сопротивления складываются.
Если слой металла 1 мм, а прилипший слой воды — 0,1 мм, то величина общего сопротивления теплопередаче в случае медной стенки равна 0,1:0,58 + 1:384 + 0,1:0,58 = 0,35 единиц термического сопротивления.
В случае стенки из нержавейки суммарное сопротивление равно 0,1:0,58 + 1:40 + 0,1:0,58 = 0,37 единиц — всего на 5% хуже.

Кстати, твой пример с деревянной и медной стенкой не подходит.
если считать толщину стенки 40 см, а толщину пограничного слоя воздуха 1 см, то общее сопротивление в случае деревянной стенки составит 1:0,025 + 40:0,15 + 1:0,025 = 347 условных единиц а если стенка будет медной — 1:0,025 + 40:384 + 1:0,025 = 80
Дом с медными стенами будет терять тепло почти впятеро быстрее, чем с деревянными.

да, и м том и в другом случае применение меди дает увеличение теплопередачи, но в первом случае на 5%, а во втором — на 500.

Kotische, ты только совершенно не прими на свой счёт, я за тебя сугубо полностью, и уж даже и близко не думал обидеть и т.п. Я чисто по существу вопроса. victorchik, 23 Февр. 10, 21:27

Ну ты, дядя Витя, упрямый. Мы с Котище в спорах друг с другом о теплопроводности такую подготовку прошли, что теперь слопаем любого.

Ты напрасно кипятишься. Я снова повторю о том, что качественно ты прав — медный холодильник лучше нержавячего, и лучше стеклянного. Это факт. Но на сколько?
разумеется, та методика расчета, что я применяю, абсолютно неточна, но она позволяет пощупать масштаб, увидеть соотношения.

Посчитать стеклянный холодильник? Без вопросов. Пенопластовый не хочу. А стеклянный. У стекла теплопроводность от 0,4 до 0,8 вт/м-градус Берем 0,6. Почти как у воды. Используем те-же условия, и ту-же методику, что и для металлических холодильников.

Сопротивление теплопередаче трехслойного бутерброда 0,1мм воды — 1 мм стекла — 0,1 мм воды равно 0,1:0,58 + 1:0,6 + 0,1:0,58 = 2 условных единицы..

Сравни с нержавейкой (0,37) или с медью (0,35).

Получается, что одинаковые медные и нержавеющие холодильники работают практически одинаково, а эффективность такого-же стеклянного холодильника в шесть раз хуже.

Похоже на правду? По моим наблюдениям — да.

Виктор, мне кажется, что ты психуешь, а я многословен. Давай по другому. Коротко, одна суть.

Теплопроводность металлов настолько отличается от теплопроводности воды, что миллиметровый слой любого металла в рубашке из 0,1мм воды практически не влияет на суммарное тепловое сопротивление «бутерброда». Смотри, для меди получилось 0,35, для нержи — 0,37. Если металла не будет совсем, а будет просто слой воды 0,2мм, его теплосопротивление составит 0,344 тех-же единицы. Вкла металла, хоть он и в 10 раз толще, мал.

Если же прослойка не металл, а стекло с теплопроводностью примерно равной тепропроводности воды, мы получаем совсем другую картину. К имеющимся 0,2 миллиметра воды добавился еще целый миллиметр «почти воды» и общее сопротивление выросло вшестеро.

Другими словами, делая аналогию, когда ты соединяешь медным проводком два килоомных резистора, ты не задумываешься о диаметре и сопротивлении проволочки — её сопротивление мизерно по сравнению с сопротивлением резисторов. В нашей ситуации резисторы с большим сопротивлением — две пленочки воды, а соединяющая проволочка — металл. Суммарное тепловое сопротивление очень мало зависит от сопротивления пленочки — от материала трубки, если это металл.

Посл. ред. 24 Февр. 10, 03:46 от Игорь

А до тех пор будет как с расположением холодильников: все считали, что холодильник должен быть расположен горизонтально, с небольшим уклоном. victorchik, 24 Февр. 10, 00:41

ты мне подсказал другой аргумент, уже не из теоретической, а из практической плоскости.
У меня почти горизонтальный холодильник из нержваейки Д15х0,5 справляется с мощностью 4,5 кВт и даёт до 10 литров в час. Длина рубашки — чуть меньше 70 сантиметров, толщина рубашки — 2-2.5 мм. Нужно ли мне ставить его вертикально? Или менять на медь?

Но я о другом. Если эффективность холодильника пропорциональна каэффициентам теплопроводности меди и нержи, твой медный холодильник, а тем более установленный вертикально, должен справится с мощностью киловатт 40 и потоком самогона в 90-100 литров в час, ведро за 7 минут. Ты считаешь, что это возможно? Наверное нет.

Я ничего не имею против медных холодильников при дистилляции питьевых дистиллятов, и считаю медь в этом деле лучшим и непревзойденным материалом. Но есть одно «но». Медные аламбики в межсезонье обязательно чистят. Дофига дерьма накапливается. А медный холодильник, спаяный в виде саксофона, прочистить, конечно, можно, но для этого надо будет его распаять. Без чистки полезное улучшение органолептики будет продолжаться некоторое время, после которого наступит баланс — количество оставляемого и смываемого в отбор дерьма уравняются.
Поэтому мой дистиллятор для крахмальных бражек будет вертикальным, из нержавейки, с подобием шлема аламбика, в котором будут находиться сменные медные вкладыши.

А если дефицит меди:
Причины дефицита меди
Недостаточное поступление меди.
Длительный прием кортикостероидов, нестероидных противовоспалительных препаратов, антибиотиков.
Длительное использование антацидов и очень высоких доз цинка приводят к гипокупремии и симптомам дефицита меди.
Дефицит меди наблюдался у пациентов, находящихся длительно на полном парентеральном питании.
Заболевания, протекающие с мальабсорбцией (целиакия и нетропическая спру), или желудочно-кишечные фистулы приводят к потере меди и увеличивают риск истощения ее запасов.
Нарушение регуляции обмена меди.
Основные проявления дефицита меди
Торможение всасывания железа, нарушение гемоглобинообразования, угнетение кроветворения, развитие микроцитарной гипохромной анемии.
Лейкопения и нейтропения.
Ухудшение деятельности сердечно-сосудистой системы, увеличение риска ишемической болезни сердца, образование аневризм стенок кровеносных сосудов, кардиопатии.
Ухудшение состояния костной и соединительной ткани, нарушение минерализации костей, остеопороз, переломы костей.
Угнетение функций иммунной системы.
Усиление предрасположенности к бронхиальной астме, аллергодерматозам.
Дегенерация миелиновых оболочек нервных клеток, увеличение риска развития рассеянного склероза.
Нарушение пигментации волос, витилиго.
Увеличение щитовидной железы (гипотиреоз, дефицит тироксина).
Задержка полового развития у девочек, нарушение менструальной функции, снижение полового влечения у женщин, бесплодие.
Развитие дистресс-синдрома у новорожденных.
Нарушение липидного обмена (атеросклероз, ожирение, сахарный диабет).
Ускорение старения организма.
Явный дефицит меди сопровождается гипокупремией и низким уровнем церулоплазмина (до 30% от нормы и ниже).
При умеренном дефиците меди (при потреблении ее в количестве, соответствующем нижней границе нормы в течение длительного периода) возможны следующие состояния: артрит, потеря пигментации, заболевания миокарда и неврологические симптомы.

Читайте также:  Роликовые ножницы по металлу своими руками

Избыток:
Причины избытка меди
Избыточное поступление в организм (вдыхание паров и пыли соединений меди в условиях производства, бытовые интоксикации растворами соединений меди, использование медной посуды).
Нарушение регуляции обмена меди.
Основные проявления избытка меди
Функциональные расстройства нервной системы (ухудшение памяти, депрессия, бессонница).
При вдыхании паров может проявляться «медная лихорадка» (озноб, высокая температура, проливной пот, судороги в икроножных мышцах).
Воздействие пыли и окиси меди может приводить к слезотечению, раздражению конъюнктивы и слизистых оболочек, чиханию, жжению в зеве, головной боли, слабости, болям в мышцах, желудочно-кишечным расстройствам.
Нарушения функций печени и почек.
Поражение печени с развитием цирроза и вторичным поражением головного мозга, связанным с наследственным нарушением обмена меди и белков (болезнь Вильсона-Коновалова). Болезнь Вильсона–Коновалова и некоторые другие заболевания, связанные с накоплением меди в печени и других тканях – это генетическая патология. Содержание меди в печени повышается при циррозе у детей в Индии, очень высок ее уровень при первичном билиарном циррозе и атрезии желчевыводящих путей. При этих состояниях в большей мере рекомендуется назначение хелатообразующих препаратов, чем ограничение меди в рационе.
Аллергодерматозы.
Увеличение риска развития атеросклероза.
Гемолиз эритроцитов, появление гемоглобина в моче, анемия.
Чрезмерное поглощение меди человеком приводит к избыточному отложению данного элемента в мозговой ткани, коже, печени, поджелудочной железе и миокарде.

Теплопроводность металлов

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Ссылка на основную публикацию
Adblock
detector