Обработка алюминия на токарном станке
Токарная обработка алюминия
ООО “Токарная обработка” занимается токарной обработкой алюминия из сплавов Д16, АМГ, В95 и других на станках ЧПУ, срок изготовления от 5 дней, расчет за 1 день
Обрабатываем алюминий всех марок на наших токарных станках, основные сплавы – Д16, АМГ и В95 (есть на складе). Изготавливаем серийные детали из алюминиевых сплавов в больших количествах.
Для расчета стоимости токарной обработки алюминия пошлите запрос с чертежами на электронную почту [email protected] . Ответим на любые вопросы 8 3439 38 00 81, 8 3439 38 98 01, доставка по всей России.
Токарные работы – механическая обработка заготовок, изготавливаемых из металла методом резания, посредством использования специального инструмента для резки. Для работы на токарных станках используют разные инструменты:
Все металлы характеризуются специфическими свойствами, поэтому их обработка и токарная обработка деталей требует определенных знаний и умений.
Алюминий – наиболее популярный и востребованный из многочисленных металлов, используемых в производстве современной техники. Главной причиной его широкого использования является подходящая плотность (это достаточно легкий материал). Алюминий не поддается коррозии, при этом пластичность материала сохраняется длительное время. Токарная обработка алюминия в чистом виде – трудоемкий процесс. Поэтому достаточно часто для работы на токарном оборудовании используются разнообразные сплавы с алюминием.
Наша компания изготавливает детали в больших количествах на токарных автоматах (пример ниже) из алюминия и сплавов на его основе.
Алюминиевые сплавы делят на два типа:
- Деформируемые — служат для изготовления листов, труб, плит, профилей и др.
- Литейные — используются для фасонного типа литья (в основном хорошо поддаются резке). Они классифицируются на такие группы, как:
- сплав с кремнием (силумин),
- сплав с медью (механические характеристики повышаются после термической обработки),
- сплав с магнием (применяются в авиастроении и токарной обработке деталей из-за высоких антикоррозийных свойств).
Обработка алюминия на ЧПУ
С позиции легкости осуществления процесса токарной обработке алюминия, сплавы можно классифицировать на два вида:
- Мягкие сплавы, которые вызывают проблемы при резке.
- Относительно твердые и прочные сплавы, легко поддающиеся обработке на токарном станке (часто они могут быть обработаны стандартным инструментом общего использования, но для повышения скорости и качества, обработку можно производить с помощью определенных инструментов).
На сегодняшний день широко используются такие виды резки алюминия, как:
- Лазерная резка, которая зачастую используется для обрезания периметра изделия, раскройки листового алюминия.
- Плазменная резка, которая используется для того, чтобы раскроить детали изделия.
- Гидроабразивная резка, которая подходит для шлифовки металла и высокоточной обработки.
- Механическая обработка (распил, сверление, обработка алюминия на токарном станке, фрезерная резка и т.д.)
- Токарная обработка алюминия – это самый распространенный сегодня вид механической обработки металла. Принцип токарных работ – снять лишний слой и довести заготовку до нужной формы и размера. Выделяют несколько видов токарной обработки, исходя из поставленных перед специалистом задач:
- автоматная,
- лоботокарная,
- резьботокарная,
- токарная с ЧПУ,
- винторезная,
- карусельная,
- револьверная,
- токарная обработка деталей.
Наша электронная почта [email protected] ждем ваши чертежи и эскизы. Звоните 8 3439 38 00 81, 8 3439 38 98 01, доставка по всей России.
Самым применяемым видом резки является обработка алюминия на токарном станке ЧПУ, когда для работы с данным материалом используют определенные режимы резки и типы фрез. По сравнению с многими другими металлами, алюминий более мягкий, что требует специального подхода при работе с ним. Алюминий может забить фрезу длинной стружкой, имеющей вязкую тягучую структуру, которая при этом может обмотать устройство.
Поэтому при токарной обработке алюминия на станке ЧПУ рекомендуется использовать специализированную концевую фрезу, защищенную от прилипания металлической стружки. Ручная обработка без специально предназначенных для этого материалов нуждается в особом внимании. Необходимо вовремя очищать фрезу, чтобы избежать повреждения механизма. От типа сплава зависит подача смазки и охлаждающего раствора. Обработка алюминия на токарном станке характеризуется как способностью вязкой стружки забивать инструмент, так и количеством полученного материала. Поэтому при токарной обработке алюминия следует продумать систему удаления лишней стружки с механизма. При работе на станке ЧПУ необходимо кроме технического еще и программное разрешение задачи. Оно подразумевает настройку конкретного подходящего режима, применение специальной фрезы (двухзаходной или трехзаходной). Нужно предусмотреть и использование широких углублений для отходов. Капризный алюминий требует особенного подхода. Поэтому использование специальной фрезы поможет избежать повреждений и заломов.
Один комментарий для “ Токарная обработка алюминия ”
Заказывал у этих ребят оси из Д16, все сделали качественно, придраться не к чему.Спасибо.
Механическая обработка алюминия
По сравнению с другими конструкционными материалами алюминий и его сплавы довольно легко поддаются механической обработке.
Механическая обрабатываемость
К механической обработке обычно относят все процессы обработки резанием: токарная обработка, фрезерование, строгание, сверление, пиление и т. д. Поскольку различных алюминиевых сплавов довольно много, то они могут иметь различные характеристики механической обрабатываемости.
Термин обрабатываемость включает все свойства, которые имеют отношение к процессу механической обработки:
- износ режущего инструмента;
- необходимая сила резания;
- форма стружки;
- качество поверхности после механической обработки.
Механическая обрабатываемость не является такими свойством материала, которое можно было бы определить одним характерным параметром. Она является комплексным технологическим термином. Обрабатываемость зависит как от физических и химических свойств алюминия или алюминиевого сплава, так и от производственного процесса, который применялся при изготовлении алюминиевого полуфабриката или изделия.
Параметры механической обработки
Кинематическое взаимодействие инструмента и детали является решающим критерием процесса механической обработки. Строго говоря, термин « обрабатываемость» должен определяться отдельно для каждого отдельного процесса механической обработки (токарной обработки, сверления и т. д.). Обычно из-за четко определенного взаимодействия инструментов и деталей термин «обрабатываемость» относят к процессу токарной обработки.
Каждая технология, которую применяют при механической обработке, зависит от нескольких независимых параметров:
- параметры резания и геометрия инструмента;
- применяемое оборудование;
- материал режущего инструмента.
Алюминиевая стружка
Форма стружки является важным критерием механической обработке алюминия. Обычно стараются получить короткую цилиндрически свитую стружку, спирально свитую стружку или просто спиральную стружку.
Различных типов алюминиевой стружки довольно много. При большом разнообразии алюминиевых сплавов они могут давать почти все известные формы стружки. Обычно соблюдается следующая закономерность: чем тверже и прочнее алюминиевый сплав, тем короче его стружка. Из нее вытекают следующие общие правила:
- Чистый алюминий и мягкие деформируемые алюминиевые дают очень длинную стружку, что вынуждает принимать специальные корректирующие меры, например, специальные приспособления для ломки стружки.
- Высокопрочные алюминиевые сплавы (например, AlMg5, AlMgSi1,0) не представляют никаких проблем по форме стружки;
- Доэвтектические литейные алюминиевые сплавы (AlSi8Cu3, AlSi10Mg и т. п.) дают короткую стружку кольцевой и спиральной формы, которая легко удаляется.
- Эвтектические литейные алюминиевые сплавы (AlSi12) склонны образовывать длинную стружку;
- Заэвтектические литейные алюминиевые сплавы всегда образуют короткую, фрагментированную стружку, которую часто трудно удалять.
Алюминиевые сплавы с улучшенной обрабатываемостью резанием содержат низкоплавкие мягкие металлы, которые способствуют образованию короткой стружки. Обычно – это сплавы с добавками свинца или висмута.
Одним из технологических параметров, которые влияют на форму стружки, является геометрия зуба режущего инструмента. Так, при пониженном переднем угле образуются более короткая стружка в тех сплавах, для которых обычно характерна длинная стружка. Это происходит за счет сжатия стружки (рисунок 1).
Рисунок 1 – Сжатие стружки при большом и малом переднем угле зуба
Качество поверхности при механической обработке
В общем случае качество поверхности, которая образуется при механической обработке алюминия и алюминиевых сплавов, зависит от трех независимых параметров:
- Кинематическая шероховатость: теоретическая глубина шероховатости (от дна до вершины), которую рассчитывают на основе относительного движения режущего инструмента и детали.
- Шероховатость механически обработанной поверхности: характерное поведение материала при его механическом разделении, связанное с особенностями его микроструктуры;
- Внешние воздействия: такие параметры, как устойчивость системы, состояние режущих кромок и т. п.; эти параметры особенно важны при механической обработке алюминия с большой скоростью резания.
В общем случае влияние материала на степень шероховатости поверхности детали после ее механической обработки, то есть на качество механически обработанной поверхности, зависит от тех же факторов, что и форма стружки.
В отношении деформируемых алюминиевых сплавов эта закономерность выглядит так:
- чем выше прочность и твердость алюминиевого сплава, который подвергают механической обработке, тем более гладкую поверхность можно на нем получить.
Что касается литейных алюминиевых сплавов, то на их механически обработанную поверхность определенное влияние оказывает их микроструктура. Твердые частицы, которые внедрены в мягкую матрицу, могут вырываться с образованием грубой поверхности. Тем не менее, в целом, качество поверхности механически обработанной поверхности литейных сплавов также может считаться хорошей и часто очень хорошей.
Скорость резания
Скорость резания является важным параметром механической обработки, который оказывает влияние на качество поверхности. Обычно величина шероховатости является обратно пропорциональной скорости резания. При низких скоростях резания шероховатость поверхности очень резко возрастает из-за повышенного налипания на режущей кромке. При механической обработке алюминия области низких скоростей резания, как правило, избегают. Налипание на режущую кромку – это явление, которое является типичным для алюминия. Оно состоит в повторяющемся налипании алюминиевых частиц на режущую кромку инструмента с последующим их срывом с кромки (рисунок 2).
Рисунок 2 – Налипание алюминия на режущую кромку при низкой скорости резания
Обрабатываемость алюминия: классификация
Группы механической обрабатываемости алюминия
С точки зрения механической обрабатываемости алюминиевые сплавы подразделяют на следующие группы (в порядке повышения трудности механической обработки):
- Группа 1: Деформируемые алюминиевые сплавы с низкой прочностью;
- Группа 2.1: Деформируемые алюминиевые сплавы повышенной прочности;
- Группа 2.2: Алюминиевые сплавы для механической обработки;
- Группа 3.1: Алюминиево-кремниевые сплавы с содержанием кремния до 10 %;
- Группа 3.2: Эвтектические алюминиево-кремниевые сплавы;
- Группа 3.3: Заэвтектические алюминиево-кремниевые сплавы.
Группа 1: Деформируемые алюминиевые сплавы с низкой прочностью
1) Термически неупрочняемые сплавы в отожженном состоянии или частично нагартованном состоянии:
2) Термически упрочняемые сплавы в несостаренном состоянии:
Характерные свойства для механической обработки:
- мягкие,
- пластичные,
- низкая прочность,
- отсутствуют твердые включения,
- склонность к налипанию на режущей кромке.
Группа 2.1: Деформируемые сплавы повышенной прочности
1) Термически неупрочняемые сплавы в нагартованном состоянии:
- AlMn
- AlMg1, AlMg2, AlMg3, AlMg4, AlMg5
- AlMgMn
- AlMg4,5Mn
2) Термически обрабатываемые сплавы в состаренном и/или нагартованном состоянии:
Характерные свойства для механической обработки:
- прочность от 300 до 600 Н/мм2 с хорошим удлинением,
- отсутствуют твердые включения – низкий износ инструмента,
- снижение склонности к налипанию на режущую кромку с увеличением прочности.
Группа 2.2: Алюминиевые сплавы для механической обработки
Термически обрабатываемые деформируемые сплавы с добавками для ломки стружки
Характерные свойства для механической обработки:
- короткая стружка благодаря присутствию добавок Pb и Bi;
- прочность от 280 до 380 H/мм 2 ;
- низкая склонность к налипаниям на режущей кромке.
Группа 3.1: Литейные сплавы Al-Si с содержанием кремния до 10 %
1) Сплавы AlSiCu
2) Сплавы AlSiMg
Характерные свойства для механической обработки:
- прочность от 250 до 360 Н/мм 2 ;
- повышенный износ режущего инструмента из-за твердых компонентов микроструктуры и включений;
- хорошая ломкость стружки и гладкая поверхность;
- склонность к налипанию на режущую кромку при содержании аремния более 5 %.
Группа 3.2: Литейные сплавы Al-Si с низкой твердостью
Сплавы Al-Si с содержанием кремния около 12 %
Характерные свойства для механической обработки:
- низкая твердость алюминиевой матрицы;
- твердые металлические компоненты микроструктуры и включения;
- высокая склонность к налипанию на режущую кромку.
Группа 3.3: Литейные сплавы Al-Si с высокой твердостью
Сплавы Al-Si с содержанием кремния свыше 12 %
- AlSi18CuMgNi
- AlSi21CuNiMg
- AlSi25CuMgNi
- AlSi17Cu4FeMg
Характерные свойства для механической обработки:
- средняя прочность;
- высокая твердость;
- очень низкая пластичность;
- высокий износ режущего инструмента из-за очень твердых интерметаллических частиц и первичного кремния;
- высокая склонность к налипанию на режущую кромку.
Алюминий и его сплавы. Особенности обработки
Алюминий – мягкий и пластичный металл, который, в общем случае, хорошо поддается механической обработке (фрезерованию, сверлению, гравированию). Режимы резания при этом могут быть намного выше, чем при обработке, например, конструкционных сталей.
С одной стороны, это обусловлено меньшими нагрузками при снятии стружки, с другой — высоким коэффициентом теплопроводности алюминия, благодаря которому тепло из зоны резания хорошо отводится вместе со стружкой, не вызывая перегрева инструмента.
Иногда при обработке алюминия можно столкнуться и с негативными эффектами.
Первый – высокая вязкость некоторых сплавов. В этом случае существует тенденция к формированию длинной стружки, которая наматывается на инструмент и забивает канавки, что приводит к поломке гравировальной фрезы или сверла. Поэтому, как правило, на инструменте для обработки сплавов алюминия делают большие стружечные канавки для облегченного схода стружки, хотя это и ограничивает максимальное количество зубьев на фрезе двумя либо тремя.
Второй негативный эффект – наростообразование. Это явление, при котором происходит точечная наплавка обрабатываемого материала на режущую кромку инструмента в зоне резания. Следствием этого является притупление режущего клина и увеличение нагрузки на инструмент, а так же затрудненный сход стружки из-за ухудшения шероховатости передней поверхности инструмента. Производители инструмента борются с этим явлением, повышая гладкость передней поверхности (например, за счет дополнительной полировки или нанесения ультрагладкого покрытия), а также задавая определенные значения переднего и заднего углов режущего клина.
При наплавке материала, происходит забивание канавки, что ведет к дисбалансу инструмента. При затуплении режущей кромки, происходит перегрев инструмента, что может привезти к заклиниванию и как следствие, к поломке дорогостоящего инструмента.
На степень и глубину наплавки материала, влияют режимы резания, геометрия режущего инструмента, степень его затупления, т.е. все факторы, определяющие протекание пластической деформации в зоне резания.
Увеличение скорости резания способствует уменьшения глубины и степени наплавки, а подачи и глубины резания – к их увеличению!
Для устранения негативных эффектов при обработке алюминиевых сплавов рекомендуется использовать специальные серии твердосплавного инструмента.
Для механической обработки на фрезерных и токарных станках, чаще всего используют марки дюрали Д16 либо Д16Т (Д16ТН).
Д16Т лучше всего подходит для механической обработки на фрезерных и токарных станках. Благодаря термообработке, данный материал имеет более хрупкую структуру, что положительно влияет на режимы его резания.
При фрезеровании Д16Т, лучше всего использовать непрерывную подачу СОЖ либо систему охлаждение инструмента масляным туманом.
При операциях с небольшими съемами за проход, Д16Т можно обрабатывать “на сухую”, либо периодически опрыскивая вручную зону резания.
Сплав Д16, так же удобен для механической обработки. Его сопротивление среза не превышает 15 кг/мм 2 . Основным отличием данного сплава, относительно термообработанного Д16Т, является чуть более высокий параметр вязкости.
При не корректных режимах резания, либо при не правильно подобранном инструменте, может происходить наматывание стружки на инструмент.
При обработке Д16, используют непрерывную подачу СОЖ в зону резания.
Инструмент – максимально остро заточенный.
Самым сложным для фрезерной и токарной обработки является чистый алюминий и его сплав с магнием (АМГ).
Данные сплавы имеют удовлетворительную прочность, хорошую пластичность и высокую коррозийную стойкость. С ростом содержания магния, существенно увеличивается прочность АМГ.
Из всех сплавов алюминия, данный сплав является самым вязким.
При обработке АМГ на фрезерных станках с ЧПУ либо на токарных станках с ЧПУ, оператор может сталкиваться с проблемой забивания канавок инструмента стружкой.
Для обработки АМГ необходимо более тщательно подбирать режимы резания: подачи и скорость вращения. Обязательно использование непрерывной подачи СОЖ в зону реза и специального, максимального остро заточенного и полированного инструмента.
Соблюдая эти правила, можно обрабатывать АМГ без опасности для инструмента и получать необходимую шероховатость.
Остальные сплавы алюминия, не так распространены при механической обработке на Токарных и фрезерных станках с ЧПУ.
Исследование проблем обработки алюминия
Рубрика: Технические науки
Дата публикации: 15.02.2017 2017-02-15
Статья просмотрена: 1840 раз
Библиографическое описание:
Баженова Н. Н. Исследование проблем обработки алюминия // Молодой ученый. 2017. №7. С. 38-40. URL https://moluch.ru/archive/141/39585/ (дата обращения: 14.01.2020).
Алюминий может подвергаться всем способам обработки со снятием стружки. Обработка резаньем алюминия по сравнению со сталью характеризуется значительно более высокой скоростью резания при равной стойкости инструмента. Алюминий должен обрабатываться со скоростями резания не ниже 90 м/мин. Исключением являются ручные работы, протяжка, сверление, зенковка и нарезание резьбы [1].
В зависимости от состава и состояния или прочности при обработке резанием алюминия выделяют три группы: 1 — нестареющие деформируемые сплавы; 2 — стареющие деформируемые сплавы и литейные сплавы с содержанием Si меньше 10 %; 3 — литейные сплавы с Si более 10 % [2].
Из всех сплавов алюминия были выявлены, практическим путем, самые «вредные» и труднообрабатываемые, в их числе сплавы: 1201 и Д16.
Сплав 1201 — высокопрочный термически упрочняемый свариваемый сплав системы Al-Cu-Mn. Сплав обладает высокой технологичностью при деформировании и сварке. Из данного сплава изготавливаются все виды полуфабрикатов (заготовок: прутки, поковки, штамповки, прессованные профили, листы, плиты и т. д.). Как и все высокопрочные сплавы, сплав 1201 чувствителен к концентраторам напряжения. Сплав 1201 имеет пониженную коррозионную стойкость.
СплавД16— один из самых востребованных дюралюминиевых сплавов в судостроительной, авиационной и космической промышленности. Главное его преимущество заключается в том, что получаемый из него металлопрокат обладает:
1. стабильной структурой;
2. высокими прочностными характеристиками;
3. в 3 раза более легким весом, чем стальные изделия;
4. хорошей механической обрабатываемостью на токарных и фрезерных станках, уступая лишь некоторым другим алюминиевым сплавам.
Дюралюминий Д16 относится к алюминиевым сплавам системы Al-Сu-Mg, легируемым марганцем. Большую его часть составляет алюминий — до 94,7 %, остальное приходится на медь, магний и другие примеси. Марганец увеличивает коррозийную стойкость сплава и улучшения его механические свойства, хотя и не образует с алюминием общих упрочняющих фаз, а лишь дисперсные частицы состава Al12Mn2Cu [2].
Д16 — это конструкционный термоупроченный и естественносостаренный сплав в заготовке, который применяется в различных областях народного хозяйства. Его применяют и для изготовления силовых элементов конструкций в авиатехнике: деталей обшивки, каркаса, шпангоутов, нервюр, тяги управления, лонжерон и т. д.
Он применяется и в автомобильной промышленности для изготовления кузовов, труб и других достаточно прочных деталей. Д16 применяют для изготовления заклёпок с высокой прочностью на срез. Эти же заклёпки применяются для крепления других более мягких алюминиевых деталей, например, из магналий АМг6 [3].
Дуралюмины хорошо деформируются в горячем и холодном состоянии. Сплав Д16 закаливают с 495–505º C в воде. Нагрев до более низких температур не обеспечивает максимальных механических свойств. Нагрев до более высоких температур вызывает пережог, т. е. окисление и частичное оплавление сплава по границе зерен, что резко снижает прочность и пластичность. Дуралюмины подвергают естественному старению, т. к. оно обеспечивает получение более высокой прочности и коррозионной стойкости в сочетании с высокой пластичностью и очень высоким сопротивлением распространению усталостных трещин (сплав Д16 является наиболее трещиностойким из всех алюминиевых сплавов) [4].
При изготовлении деталей из крупногабаритных поковок целесообразно использовать следующую схему изготовления:
– черновая механическая обработка;
– искусственное старение 190º C, 22 часа, (допускается 36 часов для крупногабаритных поковок с целью уменьшения коробления во время механической обработки и повышения размерной стабильности);
– получистовая механическая обработка;
– стабилизирующее старение 190º C, 19 часов;
– чистовая механическая обработка.
Контроль параметров качества и в частности точности размеров производится после каждой операции.
Выбор режимов резания производить в соответствии с рекомендациями для сплава Д16. Для исключения больших короблений окончательную механическую обработку деталей рекомендуется производить после искусственного старения.
Практическим путем установлено, что при фрезеровании величина внутренних радиусов переходов должна быть не менее 2 мм, шероховатость поверхности при этом достигается не хуже Ra2,5. Для ребер жесткости, если таковые имеются, наружный радиус скругления или фаски должен быть не менее 0,7–1,0 мм (по условиям чертежа). Данные рекомендации указываются для большинства деталей из сплавов 1201 и Д16. При этом не допускается разогрев обрабатываемой поверхности детали до температуры более 100ºС, так как это может привести к структурным изменениям поверхностного слоя обрабатываемой детали.
Так же одной из рекомендаций является удаление остатков охлаждающих составов после механической обработки, это условие обязательно. Единовременный контакт с СОЖ не должен превышать 15 суток, так как имеет пониженную стойкость против равномерной и межкристаллитной коррозии, а также коррозии под напряжением [3].
На поверхности корпусных деталей из сплавов 1201 и Д16 (рис. 1, 2) допускаются риски, царапины, забоины, отпечатки, пологие вмятины и выпуклости, следы от инструмента, если глубина их не более 0,05 мм.
Рис. 1. Деталь из сплава 1201
Рис. 2. Деталь из сплава Д16
Представленные сплавы очень зависимы от температурных изменений. Деталь, выполненная в середине поля допуска, и прошедшая контроль, может не войти в сборку по причине отклонений в большую или меньшую сторону относительно сопрягаемой детали. Поэтому необходимо будет применять метод селективной сборки, что является экономически не выгодным. Такое изменение может происходить в связи с понижением или повышением температуры. Примером может быть корпусная деталь, приведенная на рисунке 3, которая при обработке закреплялась в специальное приспособление.
Рис. 3. Корпусная деталь
После снятия детали с приспособления, через несколько часов закрепление в приспособление не удавалось, так как происходили деформационные изменения. Применение СОЖ позволило уменьшить деформации, вследствие температурных нагрузок и обеспечить детали стабильность размеров, в требуемом поле допуска.
Вывод: для алюминиевых сплавов 1201 и Д16 необходима выдержка деталей, особенно тонкостенных, перед переустановкой, в противном случае может произойти её деформирмация вследствие остаточных внутренних напряжений, полученных в результате механической обработки. Так же необходимо обеспечение постоянной и равномерной подачи СОЖ либо применение системы охлаждения инструмента масляным туманом для создания термоконстантных условий резания и исключения деформаций детали. Также необходимо применение остро заточенного инструмента, позволяющего проводить обработку при лучших условиях резания.
- Корягин С. И. Способы обработки материалов: Учебное пособие / С. И. Корягин, И. В. Пименов, В. К. Худяков. // Калинингр. ун-т — Калининград. — 2000. — 448 с. — ISBN 5–88874–152–3.
2. Арзамасов Б. Н. Справочник по конструкционным материалам / Арзамасов Б. Н. Соловьева Т. В. // М.: Изд-во МГТУ им. Н. Э. Баумана, 2006. — 636 с., ил. — ISBN 5–7038–2651–9.
- Квасов Ф. И. Алюминиевые сплавы типа дуралюмин [Текст] / Ф. И. Квасов, И. Н. Фридляндер // М.: Металлургия. — 1984. — 240 с.
- Колачев Б. А. Металловедение и термическая обработка цветных металлов и сплавов: Учебник для вузов. / Колачев Б. А., Ливанов В.А, Елагин В. И. // М.: МИСИС. — 3-е изд., перераб. и доп. — 1999. — 416 с.
Механическая обработка алюминиевых профилей
Алюминиевые профили обладают многими преимуществами уже потому, что они изготовлены из алюминиевых сплавов. Кроме того, алюминиевые профили легко поддаются различным видам механической обработки. Обычно инструменты для обработки алюминиевых сплавов более дешевые, чем, например, для стали, а скорость обработки алюминия выше, чем стали и многих других материалов.
Важным свойством алюминиевых профилей является то, что они могут иметь сложные поперечные сечения для выполнения самых различных функций. Поэтому они требуют только минимальной обработки и тем самым дают экономию на механической обработке по сравнению с другими материалами.
Механическую обработку алюминиевых профилей выполняют как до, так и после нанесения на них защитно-декоративных покрытий. Это зависит от технических требований, которые предъявляются к готовым изделиям или деталям.
Защитное анодирование с толщиной анодного покрытия 3-5 микрометров является хорошим способом для предотвращения повреждения профилей во время их механической обработки.
Методы механической обработки алюминиевых профилей
Для механической обработки алюминиевых профилей применяются следующие основные методы [1]:
- резка;
- зачистка реза;
- сверление;
- токарная обработка;
- фрезерование;
- нарезка резьбы;
- пробивка отверстий.
Пильная резка
Под резкой обычно понимают резку пилой, то есть пильную резку (рисунок 1). Резка алюминиевых сплавов может производиться с более высокими скоростями, чем резка стали. Большинство алюминиевых сплавов позволяют значительно более высокие скорости реза. Поэтому в большинстве случаев именно пильная резка алюминия является экономичной и оптимальной.
Рисунок 1 – Пильная резка алюминиевого профиля [2]
Внешний вид реза и наличие заусенцев зависит от применяемого алюминиевого сплава, его состояния, размеров и формы зубьев пилы, количества оборотов пильного диска в минуту, количества зубьев, диаметра пильного диска и скорости подачи пилы. Количество зубьев пилы должно быть достаточно большим, чтобы обеспечивать чистый рез. При пильной резке алюминиевых профилей обычно всегда применяют специальные смазочные эмульсии.
Основные параметры резки алюминия [1]:
- Диаметр пильного диска: 300-650 мм;
- Толщина пильного диска: 2,0-4,2 мм;
- Скорость вращения: 1500-2800 оборотов в минуту;
- Скорость подачи.
Зачистка реза
Обычно после обработки профиля на пиле с хорошо подобранными технологическими параметрами дополнительной обработки отрезанных торцов не требуется. При необходимости для удаления малых заусенцев и небольших неровностей на торце отрезанного алюминиевого профиля применяют специальные машины со щеточными или абразивными кругами.
Фрезерование
При фрезеровании алюминия применяют более высокую подачу, чем при фрезеровании стали. Поэтому фрезы для алюминия должны иметь более широкие пазы для удаления стружки. Как и для других видов обработки резанием, для алюминия применяют высокие скорости резания (рисунок 2).
Рисунок 2 – Фрезерование алюминиевой детали [2]
Если требуется высокое качество фрезерованной алюминиевой поверхности, то фрезерное оборудование должно быть достаточно мощным и прочным, чтобы быть способным обеспечивать стабильную подачу инструмента и материала.
Сверление
Как и другие виды машинной обработки, сверление алюминия производят на высоких скоростях. При работе с обычными сверлами их необходимо затачивать так, чтобы снизить требуемое давление на материал и достигать лучшего результата сверления (рисунок 3).
Рисунок 3 – Сверление алюминия [2]
Специальные сверла для алюминия применяют только для глубоких отверстий или мягких сплавов. Сверла для обработки прессованных алюминиевых профилей имеют угол заточки 130º, угол винтовой канавки 40º, а также специальные пазы для лучшего удаления стружки [1, 2].
Токарная обработка
Токарная обработка может применяться к круглым трубам или пруткам (рисунок 4). Алюминий может подвергаться токарной обработке стандартными или специальными резцами и обычно с большой скоростью вращения детали. Поэтому особое внимание уделяют тому, чтобы исключить вибрацию обрабатываемой детали. При установке детали в токарном станке применяют специальные подкладки, чтобы предотвратить образование на детали вмятин и других повреждений.
Рисунок 4 – Токарная обработка алюминиевой трубы [2]
Хорошая токарная обработка получается, если алюминиевый сплав дает короткую стружку. Поэтому обычно этим методом обрабатывают алюминиевые сплавы в упрочненном состоянии. Если металл находится в мягком состоянии, то это может приводить к его налипанию на резец, длинной стружке, скапливанию стружки, чрезмерным заусенцам и трудностям в обеспечении точности размеров.
Для охлаждения режущего инструмента и удаления стружки применяют охлаждающие жидкости на основе минеральных масел или водных эмульсий.
Нарезка резьбы на алюминии
Внутренние и наружные резьбы на алюминиевых деталях выполняют всеми обычными методами механической обработки, а также методом накатки с пластической деформацией материала (рисунок 5). Лучше всего резьба получается на термически упрочняемых алюминиевых сплавах. До диаметра 6 мм применяют обычные метчики для стали, а для больших диаметров применяют специальные метчики для алюминия. Метчики для алюминия имеют увеличенные канавки для удаления стружки.
Для выполнения наружной резьбы обычно применяют обычные плашки, а также методы пластической накатки без образования стружки.
Рисунок 5 – Нарезка резьбы в алюминии [2]
Перфорация (вырубка, пробивка)
Эти методы пробивки отверстий являются быстрыми и недорогими. Они обычно применяются перед другими методами обработки. Важно, чтобы конструкция профиля позволяла применять пробивку отверстий.
Для операций вырубки, перфорирования и пробивки применяют специальные «эксцентриковые» прессы со специальным режущим, рубящим или пробивающим инструментом. Эти инструменты для алюминия незначительно отличаются от аналогичных инструментов для других металлов. Матрицы и пробойники обычно изготавливают из упрочненной инструментальной стали. Для предотвращения появления заусенцев матрицы и пробойники подвергают регулярной заточке.
Рисунок 6 – Принцип пробивки отверстий в алюминиевом профиле
Принцип пробивки материала заключается в следующем. Подвижный пробойник ударяет в материал и вызывает в нем сначала упругую деформацию, затем пластическую деформацию и, наконец, хрупкое разрушение по всему периметру пробойника и неподвижной матрицы. В результате в профиле или листе образуется отверстие заданного диаметра с достаточно чистыми краями.
Источники:
1. Design Manual, SAPA, 2014
ООО «Алюком»
г. Москва, ул. Нагатинская, д. 16, стр. 9, офис 2-5
Тел.: +7 (495) 268 0444
E-mail: info@alucom.ru
Производство и склад: Калужская обл., г. Малоярославец, ул. Калужская, 64.