Сетевой блок питания для шуруповерта своими руками
Сетевой блок питания шуруповерта
Аккумуляторный шуруповерт – удобный и необходимый в хозяйстве инструмент. При эксплуатации «от случая к случаю», он может верой и правдой служить многие годы. К сожалению, через 2-3 года, даже при не очень интенсивной эксплуатации, аккумуляторы шуруповерта практически полностью теряют свою емкость. Исправный инструмент, а пользоваться нельзя… Что делать?
Выбросить и купить новый. Самое разумное решение, если Вы эксплуатируете щуруповерт профессионально. А если он бывает нужен всего лишь несколько раз в году – починить забор, повесить полку и т.п. Рука не поднимается выбросить исправный аккумуляторный шуруповерт. Поиск в Интернете показал, что эта проблема волнует многих. Как же предлагают поступить в данной ситуации экономные россияне и жители братских республик.
Первое, самое очевидное решение — использовать внешний аккумулятор для питания шуруповерта. Старый автомобильный или герметичный свинцово-кислотный от ИБП. Но проблема в том, что шуруповерт даже на холостом ходу потребляет 1,5…3 А, а под полной нагрузкой потребляемый ток превышает 10 А. Придется использовать либо толстые, либо короткие соединительные провода. И то и другое неудобно. Разве что работать с аккумулятором в рюкзаке…
Второе решение – сетевой блок питания шуруповерта. Ведь в большинстве случаев работы ведутся в пределах досягаемости электрической розетки. Несколько теряется мобильность, но зато щуруповерт постоянно готов к работе. В качестве блока питания можно использовать обычный трансформатор с выпрямителем. Просто, но тяжело и громоздко. Компьютерный блок питания легче, но проблема с проводами остается. Кроме того, стабилизированный блок питания при работе на коллекторный электродвигатель с резко меняющейся нагрузкой и искрящими щетками может вести себя непредсказуемо.
Самое разумное, на мой взгляд, смонтировать сетевой блок питания в аккумуляторном отсеке шуруповерта. Кабель питания в этом случае может быть небольшого сечения, гибкий и легкий. При необходимости можно использовать стандартный сетевой удлинитель. Сложность в том, что места в аккумуляторном отсеке очень мало. Тем не менее, задача вполне выполнима. Подобная конструкция описана в журнале «Радио» №7 за 2011г. – К. Мороз. Сетевой блок питания для шуруповерта. Эта статья растиражирована на многих сайтах, но практическая проверка описанной в ней конструкции показала, что электронный трансформатор для галогенных ламп, который предлагает использовать автор, – не лучшее, в данном случае решение.
Генератор с самовозбуждением на двух транзисторах хорошо работает на активную нагрузку, а вот искрящий коллектор и резко меняющаяся нагрузка – тяжелое испытание для него. В общем, после выгорания нескольких транзисторов я отказался от дальнейших экспериментов с электронным трансформатором.
Лучшее решение мне удалось найти, на форуме http://forum.easyelectronics.ru/viewtopic.php?f=17&t=1773. Его предлагает Дмитрий (dimm.electron) — под таким именем он зарегистрировался на форуме. Собранный по предложенной им схеме блок питания предназначен для установки в аккумуляторный отсек шуруповерта на 12 или 14 В, в котором находилось 10 или 12 никель-кадмиевых аккумуляторов. Схема блока показана на рисунке.
Учитывая, что это должна быть простая и дешевая конструкция «выходного дня» я слегка доработал авторский вариант. С целью экономии места исключил сетевой фильтр. Это конечно плохо, но учитывая, что пользоваться шуруповертом планирую не часто, и в основном вдали от радиоаппаратуры, вполне допустимо. Не хватило места также и для резистора, ограничивающего зарядный ток конденсаторов в момент включения в сеть. Тоже не очень хорошо, но оправдания те же самые…
В схеме максимально использованы детали от старого компьютерного блока питания. Это выпрямительный мостик VD1, конденсаторы C1, C2, трансформатор T1 и диодная сборка VD4. Силовые транзисторы тоже можно использовать от компьютерного блока питания, но они должны быть обязательно полевыми. В моем блоке они оказались биполярными, пришлось приобрести рекомендованные автором IRF840.
Еще одно упрощение – использование обычного выпрямителя VD4 на диодах Шоттки, вместо предлагаемого автором «хитрого» синхронного выпрямителя. Замечу, что необходимо использовать диодную сборку именно из диодов с барьером Шоттки. Отличить ее от обычной можно, если измерить мультиметром в режиме прозвонки прямое падение напряжения на диодах. На диодах Шоттки падает не более 0,2 В, тогда как на обычных диодах около 0,6 В. Учитывая ограниченные размеры радиатора нагрев обычных диодов будет недопустимым.
Ну и, наконец, питание микросхемы DD1 осуществляется через обычный гасящий резистор R3. Автор использует для этого еще одну «хитрую» схему – питание берется с точки соединения транзисторов VT3, VT4 через гасящий конденсатор и дополнительный выпрямитель на диодах. Сложно в наладке – надо довольно точно подбирать емкость конденсатора, он должен быть высоковольтным и термостабильным. Есть вероятность сжечь DD1.
В процессе обсуждения на форуме родился еще один вариант схемы питания – с дополнительной обмотки трансформатора. Это самый лучший вариант, бесполезный нагрев элементов минимален. Но на трансформаторе нужна дополнительная изолированная обмотка на 20-30 В.
Трансформатор – это самый важный элемент схемы блока питания шуруповерта, от качества его изготовления на 90% будет зависеть Ваше мнение об умственных способностях автора разработки. Если использовать первое попавшееся ферритовое кольцо неизвестной марки, ничего хорошего не получится. Кроме магнитной проницаемости у феррита есть и другие параметры, которые очень важны в данном случае. Необходимо использовать специально предназначенный для работы в сильных магнитных полях феррит, например от трансформаторов импульсных блоков питания компьютеров, телевизоров и др. аппаратуры мощностью не менее 200 Вт. Технология намотки тоже очень важна, автор подробно описывает, как должны быть расположены обмотки на сердечнике.
Я поступил проще – использовал готовый трансформатор от старого компьютерного блока питания. Он как раз подходит по всем параметрам. Лучше раскурочить старый блок мощностью 200-250 Вт, в нем высота трансформатора равна 35 мм – как раз помещается в аккумуляторном отсеке. Трансформаторы от более мощных блоков имеют большую высоту и не помещаются в моем корпусе.
Перед выпаиванием трансформатора нужно внимательно рассмотреть, как соединяются его обмотки и с каких выводов запитан выпрямитель +5 В. Тут возможны варианты, может потребоваться небольшая коррекция чертежа печатной платы блока питания шуруповерта. Обращаю внимание, что используется именно 5-и вольтовая обмотка, амплитуда напряжения на ней как раз около 12 В. Другие обмотки не используются.
А вот намотать на такой трансформатор дополнительную обмотку или изменить число витков существующих, к сожалению не получится. Трансформатор залит эпоксидкой и при его разборке велика вероятность сломать сердечник.
В микросхеме IR2153D между выводами 1 и 4 установлен стабилитрон на 15,6 В, поэтому питание нужно подавать обязательно через токоограничивающий резистор. Показанный на схеме пунктиром диод VD5 необходим только при использовании IR2153 без индекса «D». Конденсаторы C1, C2 можно заменить одним – 100…150 МК, 400 В. При его приобретении определяющий параметр – высота, желательно не более 35 мм, иначе может не поместиться в корпус.
Резистор R3 составлен из 4-х последовательно включенных по 8,2К, 2 Вт. Его номинал желательно подобрать при наладке так, чтобы при минимально возможном напряжении в сети, напряжение на конденсаторе C4 не падало ниже 11 В. Для уменьшения бесполезного нагрева номинал этого резистора должен быть максимально возможным, если его уменьшить, просто увеличится ток через этот резистор и внутренний стабилитрон микросхемы.
Элементы R5, R6, VD2, VD3, VT2, VT4 защищают полевые транзисторы от пробоя в случае аварийных режимов работы. Номинал C9 увеличивать не следует, т.к. это увеличит и без того большой бросок тока при включении в сеть. Мостик VD1 должен выдерживать ток не менее 5 А при напряжении 400 В. VD4 – сборка из диодов Шоттки с допустимым током не менее 30А. VD1 и VD4 отлично подходят от компьютерного блока питания. Вентилятор на 12 В, его внешние размеры 40х40 или 50х50 мм. Элементы в корпусах для поверхностного монтажа типоразмеров 0805 или 1206. DD1 в DIP корпусе, обратите внимание на надежность изоляции на плате между выводами 5 и 6.
Чертеж печатной платы показан на рисунке, вид со стороны печатных проводников. Перед ее изготовлением нужно разобрать имеющийся аккумуляторный отсек шуруповерта и убедиться, что плата в него вписывается. Скорее всего потребуется небольшая коррекция, т.к. отсеки у разных производителей имеют небольшие конструктивные отличия.
Силовые транзисторы VT1, VT3 и диодная сборка VD4 монтируются на небольших алюминиевых пластинках. Их габариты – по месту. В корпусе необходимо просверлить вентиляционные отверстия. Вентилятор придется разместить снаружи корпуса – без него длительная работа не гарантируется. Естественной вентиляции в данном случае недостаточно. И не забудьте про предохранитель FU1.
При первом включении блок лучше запитать от источника питания 20-25 В с током 100…200 МА. При этом резистор R3 временно шунтируется другим, с номиналом 1К. Если все нормально, на выходе будет 0,6…1 В. Можно посмотреть форму и частоту импульсов на вторичной обмотке трансформатора. Там должны быть прямоугольные импульсы со скважностью 50% и частотой 50…100 КГц. Частота определяется номиналами R4, C5.
Если все нормально, убираем временно установленный резистор 1К, включаем последовательно с блоком питания шуруповерта лампу накаливания на 60…100 Вт и включаем все это в сеть. В момент включения лампа кратковременно вспыхнет и погаснет, на выходе должно установиться напряжение около 12 В. Если все работает, убираем лампу и проверяем работу блока под нагрузкой около 1 Ом. Наконец, выбрасываем аккумуляторы, устанавливаем блок питания в корпус и проверяем работу шуруповерта в разных режимах.
Если эта конструкция Вас заинтересовала, можете ознакомиться с вариантами схемы от автора и его рекомендациями по самостоятельному изготовлению трансформатора. Также доступны для скачивания два моих варианта чертежа печатной платы в Sprint Layout.
Блок питания для шуруповерта 18 в своими руками – как продлить жизнь инструменту
Аккумуляторные шуруповёрты обеспечивают мобильность и свободу движения при выполнении различных работ. Однако распространённая проблема всех питающих батарей – это снижение эффективности со временем. Через определённое количество циклов они начинают хуже держать заряд или вовсе выходят из строя. Часто это становится причиной покупки нового дорогостоящего инструмента. Опытные мастера рекомендуют сделать блок питания для шуруповёрта, что позволит использовать его неограниченно на полной мощности.
Любой современный шуруповёрт имеет достаточно простую конструкцию. Он состоит из нескольких основных элементов, присутствующих в каждой модели:
- электродвигатель,
- аккумуляторная батарея,
- клавиша запуска,
- регулятор усилия,
- регулятор скорости вращения,
- планетарный редуктор,
- рычаг изменения направления движения.
Аккумулятор можно переделать в блок питания, чтобы инструмент работал от сети
Для предстоящей переделки имеют значение только первые три элемента – двигатель, аккумулятор и кнопка пуска, а остальные не будут затрагиваться никаким образом. Задача заключается в том, чтобы переделать аккумулятор в блок питания для работы от обычной электросети. Батареи являются наиболее дорогим элементом – они занимают до 75% общей стоимости инструмента, так что такое решение оправдано.
Сначала необходимо учесть размеры корпуса инструмента, чтобы новый элемент поместился внутрь. Сетевой блок можно разместить в корпусе самого шуруповёрта или в корпусе батареи в зависимости от конкретной модели. Габариты внешне определить сложно, поэтому желательно открыть его и изъять все внутренние компоненты. Если корпус склеен по швам, то необходимо ножом аккуратно разделить его. Чаще всего он крепится только на небольшие шурупы. Основные действия на предварительном этапе:
- 1. Внимательно изучаем размеры и ищем место для установки нового компонента.
- 2. Находим маркировку с указанием напряжения питания (запоминаем его).
- 3. Вычисляем требуемую силу тока.
Последний пункт вызывает трудности, потому что производители обычно не пишут этот параметр. Для вычисления нужно мощность (полную электрическую нагрузку) в ваттах разделить на напряжение электрической цепи в вольтах. Вычисление можно сделать на глаз по ёмкости и времени заряда.
Создавая новый элемент, необходимо учесть размеры корпуса, чтобы он поместился внутрь
Если первое значение составляет 1,2 А/ч, а второе 2,5 часа, то сила тока (А) будет равна примерно среднему значению, т. е. около 1,9 А.
При некорректной оценке можно потратить много сил и времени на создание блока питания, но не получить желаемого результата.
Дальше понадобится узнать следующее:
- размеры,
- минимальная требуемая сила тока,
- требуемое для работы напряжение для питания электродвигателя.
Большой популярностью пользуются импульсные сетевые блоки, потому что они легче и меньше трансформаторных. Нужно учитывать, что на дешёвых китайских моделях обычно пишут завышенные характеристики. Старые блоки советского образца подходят для переделки, но у них большой вес и низкий КПД. Найти нужные компоненты можно в специализированных магазинах или на рынках с товарами для радиолюбителей. Просто сообщите продавцу требуемые технические параметры.
К этому моменту корпус уже должен быть открыт, поэтому можно приступать к переделыванию бокса, в котором до этого располагалась АКБ. Последовательность действий будет следующая:
- 1. Отделить от вилки шнур с выводами (необходимо воспользоваться паяльником).
- 2. Разместить «голый» сетевой блок питания на место бывшей аккумуляторной батареи.
- 3. Подвести шнур для питания к БП через специальное отверстие в корпусе.
- 4. Припаять шнур к БП.
Основная задача сводится к перепаиванию проводов от контактов, которые соединяются с аккумуляторной батареей, к контактам нового блока питания. В итоге ток пойдёт сразу на них, позволяя запускать мотор при нажатии кнопки.
Выход блока соединяется клеммами с обязательным соблюдением полярности. Вся эта конструкция должна уместиться на месте бывшего аккумулятора, который теперь уже не нужен. Если что-то не сходится по размерам, тогда лучше встроить новое гнездо в рукоятку инструмента.
Обязательное условие – это подключение блока питания параллельно питающим выводам, а в разрыве провода на плюс установить специальный диод. Если этого не сделать, то питание во время работы может пойти на батарею. Диод в свою очередь встраивается в схему минусом в сторону электродвигателя инструмента.
Вы можете сделать блок питания для шуруповёрта своими руками, а можете купить готовый вариант на блошином рынке. Народные умельцы предлагают БП с уже подсоединёнными разъёмами, которые вставляются в гнездо АКБ. После этого инструмент начинает работать от сети.
При отсутствии под рукой розетки можно воспользоваться автомобильной аккумуляторной батареей. В этом случае необходимо соединить контакты шуруповёрта с контактами АКБ, используя специальные зажимы. Однако такой вариант рекомендуется использовать только в крайнем случае, так как мощности автомобильной батареи недостаточно. Обычно выдаваемое напряжение не превышает 11–12В, а чтобы работать шуруповёртом требуется не менее 18–19В.
Многие используют для подключения инструмента компьютерные блоки питания
Распространённый вариант среди радиолюбителей – это элементы АТ-типа, используемые для питания компьютеров. Плюсом является то, что к таким устройствам прилагается подробная спецификация, поэтому не придётся самостоятельно высчитывать силу тока и другие параметры. Внутри него имеется всё необходимое для стабильной работы: диодная сборка, трансформаторы, силовые транзисторы. Остаётся только правильно подключить его к питающим контактам шуруповёрта.
Наиболее эстетичный вариант – это подключение электроинструмента напрямую к сети при помощи вилки на гибком кабеле. Однако провод нельзя напрямую подвести от контактов к вилке. Чтобы сделать функциональный и безопасный сетевой прибор, потребуется отдельный БП или трансформатор с выпрямителем. В данном случае подойдёт любая модель, если её характеристики соответствуют требуемым параметрам. Такой способ сборки больше подходит для опытных мастеров, потому что нужно точно рассчитать количество витков и диаметр проволоки.
Если хочется сохранить удобство и мобильность, тогда подойдёт увеличение ёмкости аккумулятора. Необходимо найти батарею от любой техники, например, ноутбука. Обычно они достаточно мощные и способны поддерживать работоспособность на протяжении нескольких часов.
Выполняем следующие действия:
- 1. Разбираем корпус устройства, извлекаем батарею.
- 2. Соединяем проводку новой батареи со старой, строго соблюдая полярность.
- 3. Скрепляем провода с помощью изолирующей ленты или спаиваем паяльником.
- 4. Включаем электроинструмент, проверяем его работоспособность.
Кабель для зарядки устройства нужно подводить отдельно, поэтому нужно прикрепить штекер. Если всё соблюдено правильно, то шуруповёрт сможет работать от АКБ, а заряжать его можно как обычный ноутбук, воткнув вилку в сеть.
Вне зависимости от выбранного способа нужно помнить, что характеристики устройства поменялись. При работе от сети максимальный крутящий момент достигается не сразу, а через некоторое время. Увеличившаяся мощность приводит к быстрому нагреванию, поэтому следует каждые 15–20 минут давать небольшой отдых. При эксплуатации переделанного инструмента не стоит забывать о технике безопасности, поэтому обязательным условием является качественная изоляция и заземление.
Из-за нарушенной герметичности корпуса увеличивается интенсивность загрязнения, поэтому следует регулярно прочищать его от пыли. Внутрь также может попасть влага, особенно при работе на открытом воздухе. Соблюдение простых правил защитит от неприятных происшествий и существенно продлит срок службы электрического инструмента.
Варианты изготовления блоков питания для шуруповерта 18 В
Мобильный шуруповерт на аккумуляторной батарее получил широкое распространение в строительстве. Одним из существенных недостатков модели является износ аккумулятора, при износе которого приходится покупать новый шуруповерт или искать аккумулятор. Нестандартное решение предлагают радиолюбители — сделать своими руками блок питания для шуруповерта 18 В.
Простое восстановление инструмента
Основным преимуществом аккумуляторного шуруповерта является его мобильность. Применяется в таких инструментах литий-ионный аккумулятор, который защищен от перегрузки и полной разрядки. Кроме того, существует защита и от перезарядки в виде отдельной схемы, встроенной в сам элемент. Основным источником питания (первичным) является 220 В, выполняется и подзарядка аккумуляторной батареи.
В зависимости от модели шуруповерта на аккумулятор поступает напряжение зарядки от 14 В до 21 В. На выходе батареи получается напряжение питания от 12 до 18 В. Этот тип АКБ служит долго, но если инструментом не пользоваться продолжительное время, не поможет и встроенная защита от разрядки элементов батареи: разрядка происходит постоянно.
Для увеличения срока службы необходимо постоянно разряжать и заряжать батарею. Если по какой-то причине не удалось «уследить» за инструментом, часто выходит из строя какой-либо конкретный элемент аккумулятора. Существуют основные способы решения этой проблемы:
- Заменить батарею на новую.
- Приобрести новый инструмент.
- Переделать шуруповерт с питанием от сети.
При замене аккумулятора необходимо учесть, что новый достаточно сложно найти. Инструменты делают так, чтобы тяжело было найти для них запчасти. Фирме невыгодно производить свое изделие с высокой ремонтоспособностью, так как ей нужны доходы от покупки продукции. Найти новый аккумулятор возможно только у дилеров. Кроме того, возможен еще вариант: разобрать аккумуляторную батарею и поменять неисправный элемент питания.
При покупке нового инструмента пользователь стремится купить модель более качественного образца, забывая о правилах эксплуатации аккумуляторов литий-ионного типа. Основные правила, которые помогут надолго сохранить срок службы инструмента:
- При покупке в зимний период «запускать» инструмент сразу категорически запрещается. Нужно подождать около часа, пока он не «прогреется» до уровня комнатной температуры.
- Поставить батарею на зарядку.
- Цикл зарядки и разрядки АКБ выполнить около 3 раз.
Если ни один из вариантов решения проблемы не подходит, нужно приступить к переделке шуруповерта на сетевой своими руками. Сделать это просто. Существует множество простых и сложных способов. Изменение модели инструмента имеет несколько положительных сторон:
- Нет необходимости подзарядки батареи.
- Снижается нагрузка на механическую часть.
- Множество вариантов блоков питания.
- Увеличение качественных характеристик изделия.
Кроме того, мобильность возможно сохранить, переделав зарядное устройство в блоковый вариант для зарядки практически любого аккумулятора.
Другие способы модернизации
Радиолюбители предлагают много вариантов модернизации инструмента. Одни из них очень просты и сводятся к применению готовых блоков питания, а другие требуют знаний в области электротехники и придают устройству универсальность. Классификация способов:
- Адаптер питания для ноутбука.
- Подключение компьютерного импульсного БП (блок питания).
- Применение автомобильный аккумулятор на 12 В.
- Сборка самодельного источника питания.
Использование зарядника для ноутбука является оптимальным решением проблемы. Кроме того, необходимо знать параметры шуруповерта и зарядника (есть на 12 В и 19 В), а также учесть габариты последнего (для монтажа в аккумуляторный отсек). Нужно припаять выход адаптера питания ноута, к клеммам которого подсоединяется батарея.
При использовании импульсного БП (мощность от 350 Вт и выше) для персоналки (форм-фактор АТ) необходимо найти напряжение питания 12 В на разъемах, питающих винчестер или привод для чтения компакт-дисков. Вывести провода, а остальные аккуратно обрезать и заизолировать. Можно собрать корпус для БП, что позволит получить ток до 16 А. Кроме того, необходимо снять защиту от запуска. Для этого нужно соединить зеленый провод с черным из этого разъема. Эти два способа являются очень простыми и не требуют дополнительного описания.
Автомобильный аккумулятор является оптимальным источником электрической энергии. При модернизации модели ничего не изменилось, кроме подключения другой батареи. Существенным недостатком является его масса. Кроме того, нужно собрать зарядное устройство или приобрести в специализированном магазине.
Сборка своего БП является оптимальным решением для тех, кто поддерживает качество. Предыдущие варианты хороши, но не позволяют добиться гибкости применения. Например, они применимы только для шуруповертов с напряжением 12, а не 18 В. Есть зарядные устройства, рассчитанные на напряжение 19 В. Получение 18 В достигается путем последовательного соединения аккумуляторных батарей, например, 12 и 6 В. Следует учесть, что по характеристикам батареи должны отличаться только в плане напряжения. Именно поэтому часто и возникает необходимость собрать источник питания самостоятельно.
Схемы и их описание
Вариант самостоятельной сборки БП необходимо производить при условии знаний в области радиотехники. Кроме того, перед сборкой нужно хорошо все обдумать, найти корпус для монтажа и соответствующие радиоэлементы.
Простой вариант БП
Простая схема 1 БП (шуруповерта от сети 220 вольт), состоящая из трансформатора питания (вход диодного моста), выпрямителя и конденсаторного фильтра.
Схема 1 — Блок питания для шуруповерта 18 В
Трансформатор нужно подобрать с мощностью от 300 Вт и выше, напряжение на II обмотке должно быть в диапазоне от 20 до 24 В и силой тока свыше 15 А. Для диодного моста следует использовать мощные диоды, подобранные под ток вторичной обмотки. Сложнее будет подобрать соответствующее питание для шуруповерта. На выходе выпрямителя необходимо поставить конденсатор емкостью от 2000 мкФ (можно ограничиться емкостью на 470) и напряжением от 25 В и выше. Детали необходимо брать с запасом по току и напряжению. Все радиоэлементы монтируются на гетинаксовую плату, которая крепится в корпусе.
Универсальный адаптер питания
Предложенный вариант универсального БП обладает отличными характеристиками и выдерживает ток нагрузки до 10 А. Напряжение на выходе составляет 18 В, хотя можно произвести расчеты и сделать блок питания для шуруповерта 12 В. Этот БП можно применять в качестве зарядного устройства для аккумуляторной батареи (АКБ) и резервного источника питания при обесточивании сети (схема 2).
Адаптер собран на стабилизаторе напряжения, состоящего из транзистора VT3 и VD2-VD5 (стабилитроны). При помощи тумблера SB1 включается питание и замыкает свои контакты реле К1. Питание идет на трансформатор, который преобразует переменный ток до необходимого номинала. Выходной ток с трансформатора поступает на выпрямитель. Далее выпрямленное напряжение поступает на стабилизатор. Присутствует в схеме и усилитель тока, собранный на транзисторах VT1 и VT2. К этому усилителю подключается нагрузка. Режим подзарядки аккумулятора (резервный источник питания) осуществляется через VD6 и ограничитель в виде резистора R4. При помощи SB2 можно отключить подзарядку батареи.
Схема 2 — Универсальный БП для шуруповерта и зарядки АКБ
При отсутствии напряжения питания 220 В реле обесточивается, и напряжение с батареи подается на другие контакты реле (питание напрямую от АКБ). Для защиты от токов КЗ и перегрузок используются предохранители. Такую систему можно использовать без резервного источника питания. Дополнительная наладка не требуется.
Перечень радиодеталей указан на соответствующей схеме 2, однако возможны и замены аналогами, например:
- VT1 и VT2 можно заменить на КТ808 или КТ819 по таким же параметрам. Транзисторы требуют охлаждения, и поэтому наличие радиатора обязательно. Транзисторы можно посадить на термопасту для улучшения теплоотдачи. Аналогом VT3 являются КТ815 или КТ817. Допустимы любые буквенные индексы.
- Трансформатор следует использовать с выходной мощностью более 150 Вт и с напряжением под нагрузкой на II обмотке 14-16 В.
АКБ является стандартной на 12 В.
- Реле К1 необходимо использовать переменного тока на напряжение от 220 В и током в 3 А.
- Предохранитель FU1 на 3А, FU2 должен быть на 10 А.
- Выпрямитель используют уже готовый (КЦ405А, в крайнем случае — КЦ407А) или собранный на диодах Д231 и Д242 (буквенный индекс любой). Диод VD6 можно заменить аналогичным, руководствуясь справочником или интернетом.
- Стабилитроны желательно оставить такие же: от них зависят выходные параметры напряжения, хотя возможно и последовательное соединение на необходимый показатель U.
- Конденсаторы меняются на любые аналоги согласно справочной документации. Следует учитывать U в цепочке, к которой подсоединен конденсатор.
- Резисторы R2 и R3 (МЛТ-0,5), R1 и R4 (тип ПЭВ-10 или ВЗР-10).
После сборки осуществляется монтаж и приведение изделия к соответствующему виду, дизайн выбирается самостоятельно.
Адаптер на 12 В
Адаптер собирается на микросхеме 7912 и представляет собой линейный регулятор. Транзистор увеличивает мощность БП (схема 3). Этой самоделкой можно запитать и шуруповерт на 18 В, для чего необходимо рассчитать трансформатор.
Схема 3 — Блок питания для шуруповерта 12 В
Вторичный источник питания представляет собой трансформатор, на выходе которого 16 В (для модели с питанием на 12 В постоянного тока) или 22 В (питание шуруповерта 18 В). Выпрямитель собирается из обычных диодов с обратным напряжением свыше 50 В (возможно использовать уже готовые варианты). Сглаживающий фильтр представляет собой конденсатор высокой емкости около 10000 мкФ, но чем больше эта величина, тем лучше.
Микросхему нужно приобрести в специализированном магазине радиодеталей. Кроме того, в схеме использованы светодиоды, позволяющие производить диагностику при неисправностях БП. Радиоэлемент 2N3055 является транзистором p-n-p структуры и его можно заменить любым (аналог нужно подбирать из справочной литературы с напряжением около 50 В и током более 5 А). Возможно применение ЛУТ для изготовления монтажной платы. В интернете подробно описан процесс изготовления печатной платы по лазерно-утюжной технологии (ЛУТ).
Регулируемая модификация
Регулируемый БП очень удобен в использовании и является универсальным. Благодаря регулируемым значениям напряжений можно запитать любую технику, использовать для зарядки аккумулятора. Основным элементом является микросхема типа LM317. Усиление происходит при помощи двух транзисторов типа 2N3055, но можно применять и более мощные, ведь от этого мощность БП возрастает и позволяет получить ток до 20 А. Транзисторы устанавливаются на радиатор, и желательно применить в конструкции еще и вентилятор для охлаждения (кулер с персонального компьютера на 12 В).
Схема 4 — Регулируемый БП
Перечень деталей:
Трансформатор двухобмоточный на 15 В и током в 10 ампер.
- Диоды D1-D4 (диодный мост): MR750 или другой аналог.
- Вставки плавкие на 1 А и 10 А. Второй показатель выбирается согласно реальной нагрузке (потребляемый ток).
- Резисторы: R1 (2,2 к на 2,5 Вт), R2 (240), R3 и R4 (0,1 на 10 Вт), R7 (6,8 к), R8 (10к), R9 (47 на 0,5 Вт), R10 (8,2 к).
- Конденсаторы: C1, C7 и C9 (47n), C11 (22n), C2 (4700 мк на 50 В), C3 и C5 (10 мк на 50 В), C4 и C6 (100n), C8 (330 мк на 50 В), C10 (1мк на 25 В).
- Диоды (возможно применение аналогов): D5 (1N4148, 1N4448 или 1N4151), D6 (1N4001), D10 (1N5401), D7, D8 и D9 (1N4001).
- Микросхема: LM317.
- Транзисторы: 2N3055.
- Переменные сопротивления: P1 (5к), P2 (47 или 230 мощностью 1 Вт), P3 (10к).
При сборке нужно изолировать транзисторы применением теплопроводящих прокладок. Кроме того, при любых сборках мощных БП следует использовать толстые провода.
Правила эксплуатации
Если шуруповерт обладает сравнительно небольшой мощностью, нужно произвести монтаж самодельного БП в аккумуляторном отсеке. При отдельной сборке во всех БП нужно обеспечить охлаждение, использовав вентилятор или двигатель с крыльчаткой. Корпус не должен быть герметичным, так как произойдет перегрев (горячему воздуху некуда будет выходить). При готовности БП нужно проверить шуруповерт в комплексе с источником питания. Основные требования к использованию инструмента, позволяющие продлить эксплуатационный период:
- Время работы: 30-40 минут, после чего необходимо сделать паузу до полного остывания.
- Избегать работ на больших высотах.
- Следить за состоянием питающего кабеля, аккумулятора (если он используется), температурой инструмента и самодельного БП.
Таким образом, при выходе из строя аккумулятора шуруповерта на 18 В можно избежать лишних затрат. Если важна мобильность, то имеет смысл приобрести новый аккумулятор или сам инструмент. Существует множество вариантов, предложенных радиолюбителями для продления его срока службы . Необходимо выбрать оптимальный из них для конкретного случая применения устройства.
Сетевой блок питания для аккумуляторного шуруповёрта
Знакомый попросил собрать внешний блок питания для шурупоповёрта. Вместе с шуруповёртом (рис.1) принес трансформатор питания от старого советского выжигателя-гравёра «Орнамент-1» (рис.2) – посмотреть, нельзя ли его использовать?
Сначала, конечно, разобрали аккумуляторный отсек, посмотрели на «банки» (рис.3 и рис.4). Проверили зарядным устройством на работоспособность каждую «банку» несколькими циклами заряда-разряда – из 10 штук только 1 хорошая и 3 более-менее нормальные, а остальные совсем «сдохли». Значит, точно придётся делать внешний блок питания.
Чтобы собирать блок питания, надо знать какой ток потребляет шуруповёрт при работе. Подключив его к лабораторному источнику, узнаём, что двигатель начинает вращаться при 3,5 В, а при 5-6 В появляется приличная мощность на валу. Если нажать пусковую кнопку при подаче на него 12 В, срабатывает защита у блока питания – значит, ток потребления превышает 4 А (защита настроена на это значение). Если шуруповёрт запустить на низком напряжении, а потом его повысить до 12 В – работает нормально, ток потребления около 2 А, но в тот момент, когда вкручиваемый шуруп входит наполовину в доску, защита у блока питания опять срабатывает.
Чтобы посмотреть полную картину потребляемых токов, шуруповёрт подключили к автомобильному аккумулятору, поставив в разрыв плюсового провода резистор сопротивлением 0,1 Ом (рис.5). Напряжение падения с него подавали в компьютерную звуковую карту с открытым входом, для просмотра использовали программу SpectraPLUS. Получившийся график показан на рисунке 6.
Первый импульс слева – пусковой при включении. Видно, что максимальное значение достигает 1,8 В и это говорит о протекающем токе 18 А (I=U/R). Затем, по мере набора двигателем оборотов, ток падает до 2 А. В средине второй секунды головка шуруповёрта зажимается рукой до срабатывания «трещётки» — ток в это время возрастает примерно до 17 А, затем падает до 10-11 А. В конце 3-ей секунды пусковая кнопка отпущена. Получается, что для работы шуруповёрта требуется блок питания с возможностью отдавать мощность 200 Вт и ток до 20 А. Но, учитывая, что на аккумуляторном отсеке написано, что он на 1,3 А/ч (рис.7), то, скорее всего, всё не так плохо, как кажется на первый взгляд.
Вскрываем блок питания выжигателя, меряем выходные напряжения. Максимальное – около 8,2 В. Мало, конечно. Учитывая падение напряжения на диодах выпрямителя, выходное напряжение на фильтрующем конденсаторе будет около 10-11 В. Но деваться некуда, пробуем собрать схему по рисунку 8. Диоды использованы марки КД2998В (Imax=30 А, Umax=25 В). Крепление диодов VD1-VD4 выполнено навесным монтажом на лепестках контактных гнёзд выжигателя (рис.9 и рис.10). В качестве конденсатора большой ёмкости использовано параллельное включение 19-ти штук меньшей ёмкости. Вся «батарея» обмотана малярным скотчем и конденсаторы подобраны таких размеров, чтобы вся связка с лёгким усилием входила в аккумуляторный отсек шуруповёрта (рис.11 и рис.12).
В выжигателе очень неудобно стоит предохранительная колодка, поэтому она была убрана, а предохранитель подпаян «напрямую» между одним из проводов 220 В и выводом помехоподавляющего конденсатора С1 (рис.13). При закрывании корпуса сетевой провод туго обжимается проходным резиновым кольцом и это не позволяет проводу болтается внутри при изгибании его снаружи.
Проверка работоспособности шурупововёрта показала, что всё работает нормально, трансформатор после получасового сверления и закручивания саморезов нагревается примерно до 50 градусов по Цельсию, диоды нагреваются до такой же температуры и в радиаторах не нуждаются. Шуруповёрт с таким блоком питания имеет меньшую мощность в сравнении с запиткой его от автомобильного аккумулятора, но это понятно – напряжение на конденсаторах не превышает 10,1 В, а во время увеличения нагрузки на валу ещё дополнительно уменьшается. Кстати, прилично «теряется» на питающем проводе длиной около 2 метров, даже применяя его сечением 1,77 кв.мм. Для проверки падения на проводе была собрана схема по рисунку 14, в ней контролировалось напряжение на конденсаторах и напряжение падения на одном проводнике питающего провода. Результаты в виде графиков при разных нагрузках показаны на рисунке 15. Здесь в левом канале – напряжение на конденсаторах, в правом – падение на «минусовом» проводе, идущем от выпрямительного моста к конденсаторам. Видно, что во время остановки головки шуруповёрта рукой, напряжение питания просаживается до уровней ниже 5 В. На шнуре питания при этом падает примерно 2,5 В (2 раза по 1,25 В), ток носит импульсный характер и связан с работой выпрямительного моста (рис.16). Замена шнура питания на другой, с сечением около 3 кв.мм привела к повышению нагрева диодов и трансформатора, поэтому вернули назад старый провод.
Посмотрели ток в цепи между конденсаторами и самим шуруповёртом, собрав схему по рисунку 17. Получившийся график – на рисунке 18, «лохматость» — это пульсации 100 Гц (то же, что и на предыдущих двух рисунках). Видно, что пусковой импульс превышает значение 20 А – скорее всего, это связано с меньшим внутренним сопротивлением источника питания за счёт использования параллельного включения конденсаторов.
В конце замеров посмотрели ток через диодный мост, включив между ним и одним из выводов вторичной обмотки резистор 0,1 Ом. График на рис.19 показывает, что при торможении двигателя ток достигает значения 20 А. На рис.20 – растянутый по времени участок с максимальными токами.
В результате, пока решили поработать с шуруповёртом с описанным блоком питания, если же будет «не хватать мощности», то придётся искать более мощный трансформатор и ставить диоды на радиаторы или менять на другие.
И, конечно же, не стоит воспринимать этот текст как догму — абсолютно нет никаких препятствий для изготовления БП по любой другой схеме. Например, трансформатор можно заменить на ТС-180, ТСА-270, или можно попробовать запитать шуруповёрт от компьютерного импульсного БП, но, скорее всего, понадобится проверка возможности отдачи цепи +12 В тока 25-30 А.
Переводим шуруповёрт на питание от сети 220
Если у вас есть шуруповерт и вы в основном используете его внутри помещения, то, думаю, вам будет интересна и полезна данная статья. Тут речь пойдет о переделке 12 вольтового шуроповерта с ni-cd аккумулятором.
Шуруповерт для дома неплохо было бы питать от розетки. Вот сегодня этим и займемся.
Возникает логичный вопрос: а есть ли смысл вообще что-то переделывать? Так что aliexpress нам в решении этой проблемы не поможет. Поэтому хочу предложить вам другой в несколько раз более выгодный вариант.
Блоки питания от компьютеров довольно мощные ребята. Так же найти такой блок питания не составит особого труда. Наверняка у вас дома валяется подобный без дела. А если нет, то можно пойти в любой ремонт компьютеров и за пару сотен рублей купить б/у-шный блок питания, ну скажем на 500 Вт.
Пусть он будет мятый, грязный, весь в пыли, но главное, чтобы он работал. На одной из стенок обычно имеется наклейка, содержащая подробную информацию по линиям питания. На данном блоке мы можем видеть следующие характеристики: 25 А на линию 12 В, а это ни много ни мало 300 Вт мощности.
Для шуруповерта хватит с запасом. Такой блок питания конечно довольно крупный, но в то же время он гораздо дешевле даже китайских блоков на меньшую мощность.
К этим клеммам нужно будет припаять провод с сечением, ну скажем 3 мм 2 . По идеи этого должно хватить для того, чтобы энергия не рассеивалось в тепло, даже на длине провода около 2 м. Берем в руки паяльник и предварительно подготовив провода (зачистив от изоляции и облудив), припаиваем к клеммам.
Не знаю, как будет у вас в шуруповёрте, лично у автора получилось загнуть ушки клемм прямо в пластмасску и получилось весьма надежно.
Подперев снизу, например, отверткой, сверлим насквозь отверстие сверлом диаметром 3 мм. Затем снимаем фаску большим сверлом. Причем снимаем так, чтобы винтик m3 с потайной головкой не торчал.
Ну и остается это дело затянуть гаечкой. Такой вариант с винтиком в разы лучше любого другого крепления.
Также, крайне желательно поставить параллельно клеммам конденсатор на 16 или 25 В и емкостью около 10000 мкФ. Купить конденсатор можно на любом радиорынке, в любом магазине радиотоваров, а также вытащить из убитого компьютерного блока. Есть способ разжиться таким конденсатором на халяву. С большой вероятностью вам его отдадут бесплатно в любом сервисе по ремонту компьютеров. Они их все равно выкидывают. Стоит только попросить. Так что действуйте.
Конденсатор будет служить энергетическим буфером пусковых токов. Это нужно для того, чтобы снизить нагрузку на блок питания. Если этого не сделать, с большой долей вероятности он (блок питания) будет уходить в защиту. Берем и припаиваем. Гаечку в этом случае автор рекомендует приклеить на суперклей. Иначе просто не сможете закрутить.
Ну и давайте в конце проверим трещалку момента затяжки на максимальном режиме, чтобы убедиться, что блок питания тянет максимальный пусковой ток в режиме шуруповерта с трещалкой.
И тут тоже все отлично. Защита не сработала. Эксперимент можно считать более чем успешным.
И напоследок, если вы берете слабый блок питания, и он уходит в защиту, но конденсатор вы уже поставили, скорее всего срабатывает защита по напряжению. И как ни странно, проблема решается дополнительной нагрузкой на линию питания 5 В. То есть берем красные и черные провода и подключаем к ним отдельную нагрузку. На форумах пишут, что 1 А будет достаточно. Для этого берем 5 Вт лампочку на 6 В или две на 3 Вт, и пусть они просто светят и нагружают линию и все будет работать замечательно.
Благодарю за внимание. До новых встреч!